

Leseprobe

Mit diesem Buch halten Sie quasi den Masterkey für Ihr zukünftiges Smart Home in der Hand. Hiermit können Sie die Planung professionell vornehmen und finden für jedes Vorhaben die passende Antwort. In dieser Leseprobe tauchen Sie ein in die vielseitigen Möglichkeiten der Heimautomation. Außerdem erhalten Sie Einblick in das komplette Inhaltsverzeichnis und den Index.

»Intelligentes Wohnen« • »Entscheidung Smart Home« »Smart-Home-Ausbaustufen« • »Die Elektrik im Wohnhaus« »Gebäudeautomation verstehen« • »Intelligent vernetzen mit EIB/KNX« • »Atmosphärisches Licht mit DALI« • »Die Planung starten« • »Die Smart-Home-Prinzipien« • »Schaltschrank – der Maschinenraum« • »Messen mit Sensoren« • »Welten verbinden mit Gateways« • »Audio im Smart Home« • »HomeServer Experte und Client kennenlernen« • »Multimedia-Software«

Inhaltsverzeichnis

Index

Der Autor

Leseprobe weiterempfehlen

Stefan Heinle

Heimautomation mit KNX, DALI, 1-Wire und Co. – Das umfassende Handbuch

1.267 Seiten, gebunden, November 2015 49,90 Euro, ISBN 978-3-8362-3461-0

Kapitel 1 Motivation »Intelligentes Wohnen«

Im intelligenten Heim arbeiten stille Helfer für Sie im Hintergrund, befreien Sie von Routineaufgaben, sorgen für echten Wohnkomfort und helfen ganz nebenbei auch noch beim Energiesparen.

1.1 Ein virtueller Rundgang

Stellen Sie sich vor ...

Es ist 19:30, Sie haben (hoffentlich) Feierabend und fahren mit dem Auto gerade eben in den Carport ein. Da es im Oktober um diese Zeit bereits dunkel ist, schaltet sich die Leuchtstofflampe an der Carport-Decke an, und während Sie zur Haustür gehen, flammt auch der LED-Spot über der Tür auf. Einen Schritt von der Eingangstür entfernt, vernehmen Sie einen Piepton gefolgt von einem leisen Motorengeräusch. Die Tür entriegelt sich und springt einen Zentimeter nach innen auf. Dankbar, denn Sie haben beide Hände voll, betreten Sie den Windfang und sind froh, dass Sie Ihren Schlüssel aus den Tiefen der Jackentasche nicht hervorzaubern müssen.

Die fünf Meter lange LED-Zeile, die dezent im Deckenwinkel des Windfangs angebracht ist, dimmt in einem warmweißen Ton auf und leuchtet den Eingangsbereich homogen aus. Aus dem Augenwinkel entnehmen Sie der kleinen LED-Statusanzeige an der Wand, dass sich noch niemand im Haus befindet, dafür aber während Ihrer Abwesenheit jemand geklingelt hat und mindestens ein Telefonanruf eingegangen ist. Zusätzlich zeigen Ihnen die mehrfarbigen LEDs, dass keine Fenster geöffnet sind und auch keine sonstigen Hinweise wissenswert wären. Eine Störung, das wissen Sie, würde durch eine blinkende LED dargestellt werden. Jedoch arbeiten Heizung, Entkalker, Wetterstation und andere Systeme seit Langem fehlerfrei, sodass Sie die Störungs-LED insgesamt nur bei der ersten Inbetriebnahme zu sehen bekommen haben.

Mit dem selbstverständlichen Wissen im Unterbewusstsein, dass sich alle eben eingeschalteten Leuchten von selbst wieder abschalten, gehen Sie die Treppe in den Wohnraum hoch und legen Jacke und Schuhe ab. Wie an jedem dunklen Abend haben Sie sich beim Treppenaufstieg über die farbige Treppenstufenbeleuchtung (Abbildung 1.1) gefreut, für die Sie, wie auch für die gesamte Beleuchtung bis hierher, keinerlei Schalter betätigen mussten. Das wäre übrigens auch schwierig geworden, denn es gibt in Ihrem Haus dafür bewusst keine Schalter.

Abbildung 1.1 Vollautomatische Treppenstufenbeleuchtung

Im Wohngeschoss angekommen, spüren Sie die unaufdringliche Wärme der Fußbodenheizung, die das Haus auf einer angenehmen und für jeden Raum einzeln geregelten Temperatur hält. Ein Blick auf das Display des Raumtemperaturreglers im Wohnzimmer verrät Ihnen eine Raumtemperatur von 22 Grad bei einer Außentemperatur von 10 Grad. Perfekt.

Die Außenjalousien sind bereits heruntergefahren, was bei ausreichender Dunkelheit automatisch vor Ihrer Ankunft erledigt wurde. Wären Sie tagsüber daheim gewesen, hätten Sie sicherlich mitbekommen, dass über die Mittagszeit die Lamellenstellung der Jalousien dafür gesorgt hatte, möglichst viel kostenlose Sonnenwärme in das Haus zu holen. Der Beweis sind die beiden noch ganz leicht warmen Sichtbetonwände hinter den großen Fensterflächen. Über diesen raumhohen Fensterflächen sind unsichtbar vier lange Leuchtstofflampen verbaut, die sich eben beim Betreten des Wohnzimmers sanft auf 25 % gedimmt haben und den Raum indirekt beleuchten.

Neben diesen sichtbaren Vorgängen ist parallel eine ganze Menge an unsichtbaren Abläufen abgearbeitet worden. Ein stiller Beobachter im Hauptverteiler hätte mehrere Relais schalten gehört sowie einige flackernde LEDs bemerkt. Aber was ist da genau abgelaufen? Zunächst haben sich die beiden WLAN-Access-Points im Erd- und Obergeschoss aktiviert, und der 24-Port-Ethernet-Switch wurde angeschaltet. Da sich tagsüber niemand im Haus aufgehalten hat, wurde automatisch eine Vielzahl an Verbrauchern stromlos geschaltet. Diese Verbraucher, zu denen auch der SAT-Multiswitch und mehrere selbst im Stand-by-Betrieb hungrige Geräte zählen, werden jetzt wieder bestromt, schließlich sind Sie bereits seit mehr als drei Minuten zu Hause. Sie entscheiden sich, einen Abstecher in die Küche zu machen. Natürlich wiederholt sich auch hier das Spiel mit der automatischen Beleuchtung. In der Küche trinken Sie ein Glas Leitungswasser, das direkt aus dem zentralen Wasserenthärter im Technikraum stammt, mit genau 3°dH. Sie trinken noch ein zweites und drittes großes Glas. Warum ist das hier relevant? Ist es eigentlich gar nicht, aber ich möchte Sie in diesem virtuellen Rundgang nachts zum Aufstehen bewegen, daher die viele Flüssigkeit. Außerdem ist Wasser gesund.

Auf dem Weg zurück ins Wohnzimmer gehen Sie an dem Raumtrenner vorbei, der gleichzeitig als Schrankwand dient und in seiner Rückwand flächenbündig einen 23-Zoll-Touchscreen eingebaut hat. Dieser aktiviert sich automatisch, sobald er Ihre Bewegung registriert hat, und präsentiert Ihnen die Bedienoberfläche (Abbildung 1.2) Ihres Smart Homes, sozusagen das Interface zum Gehirn des Hauses. Hier haben Sie die uneingeschränkte Macht, können alles im gesamten Haus schalten, bewegen und steuern. Beleuchtung, Jalousien, Heizung, Musikanlage – das sind nur einige Beispiele. Sie sehen aktuell keine Notwendigkeit, von der Macht Gebrauch zu machen, schließlich passiert das meiste automatisch, und manuelle Eingriffe sind sowieso eher unsmart.

Abbildung 1.2 Visualisierung über einen Touchscreen

Stattdessen verschaffen Sie sich lieber einen Überblick und browsen per Fingertipp durch mehrere Menüseiten. Die Liste der Telefonanrufe, die Kamerabilder der Personen, die geklingelt haben, Meldungsarchiv und ein paar RSS-Feeds sind schnell geprüft. Die grafische Ausgabe des Stromverbrauchs von Haushaltsstrom und Wärmepumpe über die Zeit ist ebenfalls immer wieder hübsch anzusehen. Besonders in der Wochendarstellung ist deutlich zu erkennen, dass sich der Grundstromverbrauch bei Abwesenheit reduziert hat dank der kürzlich durchgeführten Programmierung der Stand-byAbschaltung. Ein Blick auf die symbolische Energieampel bestätigt die Erkenntnis: Bei der nächsten Stromrechnung wird es wohl eine Rückzahlung geben. Der abschließende Blick auf die Feuchtigkeitswerte im Keller und auf die Einschaltintervalle der neu angeschafften Kühltruhe gibt Ihnen auch diesbezüglich ein gutes Gefühl: alles im grünen Bereich.

Sie hätten übrigens das gleiche Interface in etwas anderer Darstellung auch von unterwegs über Ihr Smartphone bedienen können, aber wenn Sie schon gerade vor dem Touchscreen stehen, benutzen Sie diesen natürlich auch.

Während Sie wieder in die Küche zurückgehen, erinnert Sie ein akustisches Signal daran, dass noch irgendwer die Waschmaschine ausräumen sollte, die vor 30 Minuten ihren Waschvorgang beendet hatte. Natürlich könnten Sie die Erinnerung einfach »überhören«, aber im Sinne des Hausfriedens entscheiden Sie sich, das kurz zu erledigen, bevor Ihre Frau nach Hause kommt.

Sie sind der Meinung, dass nach dieser Arbeit eine kurze TV-Berieselung angebracht wäre, und schalten mittels der Fernbedienung die Szene *Fernsehen*. Ein Knopfdruck genügt, und Fernseher sowie SAT-Receiver schalten sich ein. Der für SAT-Empfang richtige Eingang am TV-Gerät wird ausgewählt. Die indirekte Beleuchtung wird für das entspannte Fernsehen entsprechend gedimmt, eine kleine Stehlampe eingeschaltet und die sich auf der Mattscheibe spiegelnde Beleuchtung im Hintergrund ausgeschaltet. Die Wohnzimmerjalousien sind bereits geschlossen, ansonsten wäre das jetzt gleich automatisch miterledigt worden.

In das laufende Fernsehbild wird plötzlich eine Meldung eingeblendet, die besagt, dass das Telefon gleich klingen wird, was es zwei Sekunden später auch wirklich macht. Der Meldung können Sie gleich entnehmen, wer der Anrufer ist. Bei einer unbekannten Nummer wäre per Reverse-Suche der Name des Anrufers direkt ermittelt worden. Der Fernseher schaltet auf stumm, während Sie den Anruf am DECT-Telefon entgegennehmen.

Währenddessen ist auch Ihre Frau nach Hause gekommen und wurde, wie Sie selbst auch, vom Smart Home mit allerlei Komfortfunktionen empfangen. Natürlich »weiß« das Haus, wer zur Eingangstür hereinkommt, und könnte für jeden Bewohner anders reagieren. In diesem Fall war das aber nicht vorgesehen – noch nicht.

Die Begrüßungsszene und die umfangreiche Zu-Bett-gehen-Szene überspringe ich an dieser Stelle, sie bleibt, entsprechende Verkaufszahlen vorausgesetzt, einem zweiten Teil dieses Buchs vorbehalten.

Inzwischen ist es 22:30, und Sie werfen vom Bett aus einen Blick auf die kleine Anzeige an der Wand des Kopfendes. Sie würden per LED darauf hingewiesen werden, dass es noch offene Fenster gibt, was aber nicht der Fall ist. Ebenso gibt es aktuell keine Störungen, und es werden auch keine Bewegungen in den anderen Räumen außerhalb des Schlafzimmers angezeigt. Gut, Zeit für die »Gute-Nacht-Taste«, die Sie prompt betätigen. Ihr Haus schaltet sich daraufhin in den Schlafmodus, der eine ganze Menge an Aktionen auslöst. So werden sämtliche Jalousien geschlossen, die Innenrollladen im Schlafzimmer heruntergefahren, eventuell noch eingeschaltete Lampen ausgeschaltet, Stromverbraucher, soweit sinnvoll, vom Netz getrennt, und sogar die Statusanzeige der LEDs wird für den ruhigen Schlaf abgedunkelt. Zusätzlich ist die Alarmanlage jetzt scharf geschaltet.

Ein paar Stunden später machen sich die etlichen Gläser Wasser bemerkbar, die Sie am Abend getrunken haben, und Sie ringen sich durch, das Badezimmer aufzusuchen. Es reicht bereits, dass Sie einen Fuß aus dem Bett auf den Boden stellen, woraufhin ein paar wohlplatzierte LEDs den Weg zum Bad halbschlafsicher ausleuchten. Im Badezimmer werden Sie nicht etwa von der hellen Standardbeleuchtung begrüßt, sondern von dem stark heruntergedimmten Nachtmodus. Zurück im Bett angekommen, wird die Beleuchtung ebenso diskret wieder abgeschaltet.

Am nächsten Morgen werden Sie pünktlich und so schonend wie möglich durch leicht geöffnete Lamellen und langsam lauter werdende Musik aus den Einbaulautsprechern geweckt. Die zentral gesteuerte Multiroom-Soundanlage sorgt dafür, dass Sie die Musik auf dem Weg vom Schlafzimmer ins Badezimmer sozusagen »mitnehmen«. Wiederum ohne einen einzigen Tastendruck auslösen zu müssen, zeigt sich das Badezimmer in einem komplett anderen Szenario als noch in der vergangenen Nacht. Die Beleuchtung ist hell, und zusätzlich werden auch der Spiegel und die Duschnische angestrahlt. Die Musik, die Sie vorher noch im Schlafzimmer gehört hatten, ertönt jetzt stattdessen im Badezimmer aus unauffälligen Wandlautsprechern.

Während Sie sich bereit machen, gehen wie von Geisterhand die beiden PCs in den Arbeitszimmern des Hauses an, ebenso startet der NAS-Server im Keller. Es ist an der Zeit für das zyklische Backup. Die beiden PCs sichern Ihre Daten auf dem NAS, und nach Beendigung des Backups fahren alle drei Rechner ordnungsgemäß und ohne Ihre Mithilfe wieder herunter.

Würde es nicht so stark regnen, könnten Sie vom Badezimmer aus den kleinen Mähroboter beobachten, wie er eine der letzten Runden für dieses Jahr dreht. Dass er heute Morgen jedoch frei hat, verdankt er dem Smart Home, das ihn, basierend auf den Daten der Wetterstation, besser nicht zum Dienst sendet.

Sie machen sich bereit, das Haus zu verlassen, im Windfang spendet Ihnen die LED-Zeile im Deckenwinkel wieder warmweißes Licht. In dem Moment, in dem Sie die Haustür öffnen, dimmt die LED-Zeile jedoch von Weiß auf Blau. Richtig, fast vergessen, es ist Donnerstag, und Sie sollten die Mülltonne an den Straßenrand stellen.

Nachdem Sie das erledigt haben und sich ins Auto setzen, endet der kleine virtuelle Rundgang auch schon, und die Haustür verschließt sich selbst über das eingebaute Motorschloss.

1.2 Smart Home, Heimautomation – was ist das?

Als *Smart Home* (übersetzt: intelligentes Zuhause) bezeichnet man ein Wohnhaus (bzw. eine Wohnung), das ganz bewusst mit *intelligenter Gebäudetechnik* ausgestattet ist. Intelligent wird die Gebäudetechnik dadurch, dass sie in der Lage ist, ohne Zutun oder mit nur minimalen Eingriffen der Bewohner die alltäglichen Funktionen eines Zuhauses selbstständig zu steuern. Dazu zählen Beleuchtung, Jalousien, Temperaturregelung und Überwachung, Alarmierung, multimediale Unterhaltung und vieles weitere.

1.2.1 Das Smart Home setzt auf intelligente Gebäudetechnik

Intelligente Gebäudetechnik basiert auf einer gewerkeübergreifenden Vernetzung. Je mehr Einzelgewerke (wie Beleuchtung, Heizung, Sicherheit, Beschattung usw.) Teil dieses Netzwerks sind, desto erstaunlichere Funktionen lassen sich umsetzen. Die Vernetzung beginnt bei einfachen Tastern, Schaltern und Leuchten, weitet sich auf unterschiedlichste Sensoren (Temperatur, Helligkeit, Bewegung, Fensterkontakt usw.) aus und beinhaltet ebenso Haushaltgeräte, Kommunikationstechnik und Unterhaltungselektronik. Das Netzwerk, über das die Aktoren und Sensoren miteinander kommunizieren, wird *Bussystem* (auch Automatisierungsbus, Installationsbus oder Hausbus) genannt.

Ein solches System ist grundsätzlich automatisierbar, kann auf alle im Netzwerk vorhandenen Informationen (Messwerte, Schalterpositionen, manuelle Eingaben, Onlinedaten) zurückgreifen und diese in Logikfunktionen mit einbeziehen. Eine Logikfunktion wird, entsprechende intelligente Gebäudetechnik vorausgesetzt, rein in Software umgesetzt und bedarf keiner Änderung der physikalischen Installation. Im Gegensatz zur konventionellen Elektrik, bei der die Funktion bereits größtenteils durch die Verkabelung selbst vorgegeben ist und sich nachträglich gar nicht oder nur sehr schwer ändern lässt, bietet ein Smart Home den Bewohnern größtmögliche Flexibilität.

Die intelligente Gebäudetechnik entwickelt sich rasant, sie ist heute bereits fester Bestandteil einer modernen und zukunftsorientierten Elektroinstallation mit der Zielsetzung, uns im Alltag zu unterstützen und von Routineaufgaben zu befreien. Im eigenen Zuhause sorgt sie für deutlichen Komfortgewinn bei gleichzeitiger Erhöhung der Sicherheit und Optimierung der Energieeffizienz.

1.2.2 Smart-Home-Schlüsseleigenschaften

Unter Smart Home versteht nicht jeder das Gleiche, der Bereich des Möglichen und Machbaren ist sehr breit gefächert. Es lassen sich jedoch bestimmte Schlüsselmerkmale finden, die bei einem echten Smart Home stets vorhanden sind:

 Die Funktionen der Elektroinstallation sind flexibel änderbar, das programmierte System lässt sich jederzeit an die Bedürfnisse der Bewohner bzw. an veränderte Lebensumstände anpassen.

- Die Smart-Home-Komponenten sind gewerkeübergreifend untereinander vernetzt, können Informationen austauschen und sind innerhalb ihrer Funktionalität parametrierbar.
- Abläufe sind automatisierbar und folgen einem vom Benutzer/Installateur anpassbaren Regelwerk.
- Die Gesamtfunktionalität des Smart Homes wird durch die Kombination vieler Einzelkomponenten mit Eigenintelligenz erreicht. Ergänzt werden kann dieses dezentrale System durch eine optionale zentrale Logik.
- ► Im System ist ein komplettes Abbild aller Informationen und Gerätezustände vorhanden, wodurch es sich anbietet, diese über ein zentrales Bedienpanel zu visualisieren, und zwar sowohl lokal (im Gebäude) als auch ferngesteuert (mobil).

Auch wenn es sehr gern in aktuellen Fernsehwerbesendungen so gezeigt wird – das Einund Ausschalten der Gebäudebeleuchtung über ein Smartphone oder das Öffnen eines Heizkörperthermostats vom Auto aus ist noch längst kein Smart Home. Zudem lässt sich über die Sinnhaftigkeit sogar streiten. Ein Smart Home sollte bitte selbstständig in der Lage sein, die Beleuchtung auszuschalten, wenn kein Bewohner zu Hause ist, und eine vernünftige Raumtemperaturregelung benötigt eigentlich überhaupt keinen Eingriff.

1.2.3 Alternative Begriffsdefinitionen für das Smart Home

Neben dem Begriff *Smart Home* lassen sich mehrere ähnliche Bezeichnungen wie z. B. *Smart Living, intelligentes Wohnen* oder *E-Home* finden. Ihre jeweilige Bedeutung ist nicht scharf definiert, im Wesentlichen bedeuten sie allesamt das Gleiche. Hersteller von Smart-Home-Komponenten fügen der Liste zudem weitere marketingtechnisch geprägte Begriffe für ihre teils in sich geschlossenen spezifischen Systeme hinzu. Wenn wir im Rahmen dieses Buchs von Smart Home sprechen, beziehen wir uns immer auf ein herstellerunabhängiges System aus intelligenter Gebäudetechnik, bestehend aus den in diesem Kapitel aufgeführten Schlüsseleigenschaften.

Im Umfeld der Gebäudeautomation oft verwendet wird der Begriff *Smart Metering*. Darunter versteht man das Messen und die intelligente Regulierung des Energieverbrauchs. Eine typische Anwendung wäre beispielsweise das permanente automatische Ablesen der Stromzählerstände und Momentanverbrauchsdaten mit Bereitstellung dieser Messwerte über ein Bussystem. Von dort werden sie von anderen Busteilnehmern abgeholt und weiterverarbeitet (grafische Auswertung des Verbrauchs, Überwachungsfunktionen).

1.2.4 Das Thema Heimautomation

Mit diesem Buch halten Sie ein Werk in den Händen, das sich dem großen (und spannenden) Thema *Heimautomation* widmet. Unter Heimautomation oder, breiter gefasst, Gebäudeautomation versteht man die Gesamtmenge von Steuer- und Regelaufgaben sowie Überwachungsfunktionen in einem Gebäude mit der Zielsetzung:

- gewerkeübergreifende Funktionsabläufe selbstständig (also automatisch) nach vorgegebenen Parametern ablaufen zu lassen und
- die verbleibende manuelle (nicht automatische) Bedienung und Überwachung zu vereinfachen.

Die Heimautomation basiert vollständig auf einer intelligenten Gebäudetechnik, bei der alle Sensoren, Aktoren, Bedienelemente und weitere Systemgeräte miteinander vernetzt sind. Man könnte sagen, die Heimautomation haucht der Gebäudetechnik Leben ein, sie sorgt dafür, dass ein Gebäude das tut, was die Bewohner von ihm erwarten, sie macht aus dem Home ein Smart Home.

1.3 Die Wahl des Bussystems

Intelligente Gebäudetechnik setzt immer voraus, dass die ins System eingebundenen und in der Regel dezentralen Geräte untereinander kommunizieren können. Dazu verwenden sie entweder ein kabelgebundenes oder ein funkbasiertes *Übertragungsmedium* zusammen mit einem dazu passenden *Protokoll*. Es entsteht ein Kommunikationsnetzwerk oder eben, im Fall einer verkabelten Topologie, ein Installationsbussystem, kurz *Bussystem*. Die Wahl des richtigen Bussystems bzw. Funksystems ist einer der wichtigsten Schritte auf dem Weg zum Smart Home und eine weitreichende Entscheidung, denn sie diktiert, welche Steuergeräte Sie später einsetzen können, welche Sensoren und welche Aktoren. Der Markt bietet mehrere Dutzend Automatisierungssysteme, allerdings sind nur wenige davon so standardisiert, dass Sie sich nicht an einen einzigen Hersteller binden müssten, und noch weniger davon eignen sich für eine so langfristige Investition wie die in die Gebäudetechnik.

Im Rahmen dieses Buchs kann ich natürlich nicht auf alle unterschiedlichen Systeme eingehen, sondern konzentriere den Inhalt auf die Crème de la Crème der Automatisierungskonzepte für den Heimbereich. Sie werden im weiteren Verlauf dieses umfassenden Handbuchs lernen, wie Sie den weltweit größten Gebäudeautomatisierungsstandard **KNX** optimal für Ihr eigenes Smart Home einsetzen und sinnvoll mit weiteren Technologien wie z. B. DALI oder 1-Wire kombinieren. Die Begründung möchte ich Ihnen nicht vorenthalten: KNX ist das Mittel der Wahl, weil KNX

- ein wirklich professionelles System ist, das auch in Firmengebäuden und öffentlichen Gebäuden breite Anwendung findet,
- als weltweit größter Gebäudeautomatisierungsstandard eine seit mehr als 20 Jahren bewährte und ausgereifte Technologie bietet,
- ► sehr robust ausgelegt ist,

- keine proprietäre Einzellösung (Insellösung) ist, sondern ein weltweiter Standard mit großer Herstellervielfalt (über 400 Hersteller) und mehr als 7.000 KNX-zertifizierten Produkten,
- durch alle starken Marken der Elektroinstallationsbranche vorangetrieben wird,
- durch die Herstellerunabhängigkeit Ihre Investition auch in der Zukunft schützt,
- Sie nicht durch irgendeine Form von Cloud-Zwang oder Onlineaccount verunsichert und Ihre Privatsphäre unangetastet lässt,
- gewerkeübergreifend arbeitet (Heizung, Beleuchtung, Jalousien, Belüftung, Multimedia-Anlagen, Sicherheitstechnik, Smart Metering und weitere),
- ▶ auf verschiedenen Medien einsetzbar ist Twisted Pair, Funk, IP und Powerline (das 230-V-Stromnetz) –,
- durch weltweit mehrere Zehntausend gelistete KNX-Partner qualifiziert unterstützt wird und weil es
- ► sich gut und sinnvoll mit anderen Technologien (DALI, DMX, 1-Wire, EnOcean, SMI usw.) kombinieren lässt.

Insbesondere den letzten Punkt werde ich mehrfach wieder aufgreifen. KNX deckt zwar viele Anwendungsfälle ab, ist aber nicht in allen Bereichen optimal. Diese Lücke schließen wir durch eine Reihe von Spezialtechnologien, die Sie allesamt genau kennenlernen werden. Stellen Sie sich das Ganze wie einen sehr guten Allrounder vor, der für ausgewählte Einzeldisziplinen mit echten Spezialisten kombiniert (vernetzt) wird. Durch diese Kombination sind Sie bestens für alle aktuellen und künftigen Anforderungen an ein Smart Home gerüstet.

Kapitel 2 Entscheidung Smart Home: ja oder ja

Wer heute ein Haus ohne intelligente Gebäudetechnik baut, errichtet einen Altbau.

Wer ein Haus bzw. eine Wohnung neu baut, umbaut oder saniert, steht an einem gewissen Punkt vor der Entscheidung, wie die künftige Elektroinstallation aussehen soll: *konventionell* oder *intelligent*? Den meisten Bauherren ist nicht bewusst, welches Potenzial eine gute Elektroinstallation und die damit verbundene Möglichkeit einer intelligenten Gebäudeautomation mit sich bringt. Die Folge ist: Es wird, im Vergleich zu anderen Gewerken, recht wenig Wert auf eine zukunftssichere Installation gelegt, geschweige denn an ein Bussystem oder Automatisierungskonzept gedacht.

2.1 Rechnet sich eine Businstallation für mich?

Sind wir ganz ehrlich: Es macht im ersten Moment viel mehr Spaß, für den Neubau eine tolle und beeindruckende Küche auszuwählen, als sich um eher langweilige Kupferleitungen zu kümmern. Das ist nur verständlich, denn eine schöne Küche ist etwas direkt Nutzbares, etwas Wertiges, wohingegen eine im Verborgenen arbeitende Gebäudesteuerung erst einmal nicht greifbar ist. Vergleicht man hingegen die *Nutzungsdauer* der beiden, wird klar, dass die Prioritäten oft falsch gesetzt sind. Eine Küche ist 10 oder 15 Jahre im Einsatz, vielleicht auch sogar 20 Jahre. Spätestens dann aber haben Sie sich an ihr sattgesehen, oder sie fällt von sich aus auseinander. Für eine Elektroinstallation sind 20 Jahre hingegen überhaupt keine Zeit. Kaum jemand kommt auf die Idee, eine komplette Elektroinstallation auszutauschen, es sei denn, man möchte gleich das ganze Gebäude sanieren. In der Regel bleibt die Installation so lange erhalten, wie das Gebäude genutzt wird. Unschöne Kompromisse schleppen Sie daher die nächsten 30 bis 40 Jahre mit sich herum.

Unter diesem Aspekt betrachtet, kann man der Gebäudeinstallation gar nicht genug Aufmerksamkeit schenken. Sie sollte für eine sehr lange Zeit Ihre Erfordernisse abdecken und flexibel für künftige Änderungen Ihrer Lebensumstände sein. Genau an dieser Stelle betritt die intelligente Gebäudesteuerung mit einer in der Elektroplanung vorgesehenen Businstallation die Bühne.

Die Frage, ob sich eine Businstallation überhaupt rechnet, ist eine der ersten, die sich jeder Bauherr und jeder Interessierte stellen wird. Eine pauschale Antwort gibt es leider nicht. Unter Berücksichtigung der angesprochenen Nutzungsdauer und der Flexibilität relativiert sich der Aufpreis jedoch größtenteils. Weitere Argumente sprechen ebenfalls für eine moderne Gebäudesteuerung:

- ► großer Komfortgewinn durch Automatisierung
- ► zukunftssichere Investition
- Erleichterungen im Alter, auch AAL genannt (Ambient Assisted Living = altersgerechte Assistenzsysteme f
 ür ein selbstbestimmtes Leben)
- ► Energieeinsparungen
- ► Erhöhung der Sicherheit durch vernetzte Melder, Kameras, automatische Alarmierung, Anwesenheitssimulation, Zutrittssysteme usw.

Bei einem modernen Gebäudesystem wie KNX bekommen Sie, im Vergleich zu einer herkömmlichen Installation, natürlich nicht mehr für weniger Geld, sondern Sie bekommen mehr für mehr Geld. Je mehr Gewerke Sie mit KNX realisieren, desto kleiner wird der Aufpreis. Falls Sie nur ein paar Leuchten über einen Bus steuern möchten, ist der mit KNX verbundene Initialaufwand selten gerechtfertigt. Im Gegensatz dazu ist KNX aber ab einem bestimmten Volumen eventuell sogar preisgünstiger als eine konventionelle Installation.

2.2 Das Smart Home und der Energieverbrauch

Einer der großen Vorteile des intelligenten Zuhauses sind Ersparnisse bei Strom und Heizungsenergie. Eine gute Dämmung ist effektiv, aber reicht irgendwann nicht mehr, schließlich kann man ein Haus nicht noch dicker einpacken. Der nächste logische Schritt führt zum Nutzungsverhalten der Bewohner, und genau an diesem Punkt entwickelt ein Smart Home erstaunliche Fähigkeiten.

2.2.1 Wo wird am meisten Energie verbraucht?

Im Schnitt etwas weniger als 90 % des Energieverbrauchs eines privaten Haushalts in Deutschland werden für Heizung und Warmwasser verwendet. Den deutlich überwiegenden Anteil (77 %) macht dabei die Raumwärme aus, von der leider oft ein Großteil durch Wände, Fenster, Dach usw. entweicht. Die restlichen 12 % werden für Warmwasserbereitung eingesetzt.

Anhand dieser Verteilung wird schnell klar, wo der Hebel für die Energieeinsparung zuallererst angesetzt werden muss: bei der Gebäudedämmung.

Bei Neubauten ist eine effektive Dämmung sowieso obligatorisch, aber auch bei strukturell schwachen Gebäuden lassen sich meistens erhebliche Energieeinsparungen durch bauliche Maßnahmen erzielen. Recht anschaulich wird eine erfolgreiche Dämmmaßnahme zum Beispiel anhand des Winterfotos in Abbildung 2.1. Raten Sie, welche identisch genutzte Hälfte des Doppelhauses gedämmt wurde und welche nicht.

Abbildung 2.1 Doppelhaushälften mit weniger Dämmung (rechts) und mit mehr Dämmung (links)

2.2.2 Wie hilft eine intelligente Gebäudesteuerung beim Energiesparen?

Ab einer gewissen Gebäudebeschaffenheit (Dämmung, Heizsystem, Belüftungssystem usw.) lässt sich der Energieverbrauch nur noch mit einer intelligenten Steuerung (wie z. B. KNX) spürbar vermindern.

Da der Mensch in seiner Handlungsweise recht schwer kalkulierbar ist, haben auch die besten Maßnahmen zum energieeffizienten Bauen allzu oft nicht den erwarteten Einspareffekt. Ein Heizkörper, der bei geöffnetem Fenster stundenlang die umliegende Nachbarschaft beheizt, eine Beleuchtung in einem unbenutzten Raum, die den Stromzähler auf Trab hält, Verbraucher mit hohem Stand-by-Verlust, die das Gleiche tun, heruntergefahrene Jalousien, die kostenlose Wärmeenergie im Winter nicht in das Haus lassen – man findet unzählige weitere Beispiele, die zwar den Energieversorger freuen dürften, nicht aber den Hausbewohner.

An dieser Stelle greift die Gebäudeautomation. Sie unterstützt das Nutzungsverhalten der Bewohner, indem sie einen großen Teil der Funktionen automatisiert ablaufen lässt oder zumindest auf bestimmte Verhaltensweisen aufmerksam machen kann. Somit kann der Bewohner selbstständig entscheiden, ob und in welcher Form er energieeffizient handeln möchte.

Wie teilt sich der Stromverbrauch auf?

Der durchschnittliche Haushaltsstromverbrauch liegt in Deutschland bei 3.162 kWh pro Jahr (2011), das entspricht 1.565 kWh pro Person (Quelle: BDEW Sept. 2011, Statistisches Bundesamt).

Die Aufschlüsselung für das Jahr 2011 und im Vergleich dazu 1996 liefert die folgende Abbildung 2.2.

Interessant ist die starke Zunahme im Bereich TV/Audio/Büro, die sich durch den wachsenden Einsatz von IT-Systemen und Multimedia-Ausstattung im Privathaushalt erklärt. Im Gegensatz dazu greifen offensichtlich Energieeinsparanstrengungen für Kühlen, Klima und Wellness deutlich.

Abbildung 2.2 Stromverbrauch 2011 im Privathaushalt (Quellen: EEFA 2013, VDEW 1996)

Wo kann gespart werden?

Die verwertbaren Literaturquellen zeigen deutliche Optimierungspotenziale auf. In Tabelle 2.1 finden Sie die Bandbreite der Einsparmöglichkeiten bezüglich der Reduzierung des Energieverbrauchs durch den Einsatz moderner Elektroinstallationssysteme. Die dafür einzusetzenden Schlüsselkomponenten sind jeweils exemplarisch mit aufgeführt:

Maßnahme	Mögliche Ersparnis	Zentrale Komponenten
Automation des	9–32 %	► Wetterstation
Sonnenschutzes		 Jalousieaktoren
Einzelraumtemperatur-	14–25 %	► Raumtemperaturregler
regelung		► Stellantriebe
Automation der Heizung	7–14 %	 Heizungsgateway
Automation der	25–58 %	 Bewegungsmelder
Beleuchtung		 Präsenzmelder mit Helligkeits-
		sensor
		 Zeitlogiken
		 Wetterstation
		 Schalt- und Dimmaktoren

Tabelle 2.1 Mögliche Einsparpotenziale durch intelligente Gebäudeautomation

Maßnahme	Mögliche Ersparnis	Zentrale Komponenten
Belüftungsautomation	20–45 %	 Feuchtigkeitssensoren
		 Luftqualitätssensoren (CO₂, VOC)
		► Fan-Coil-Aktoren

 Tabelle 2.1 Mögliche Einsparpotenziale durch intelligente Gebäudeautomation (Forts.)

Der Mittelwert aller verwendeten Quellen ergibt eine mittlere Energieeinsparung durch intelligente Gebäudeautomation und Optimierung in Bezug auf die Regelungstechnik in Höhe von ca. 11 bis 31 %. Es darf also durchaus behauptet werden, dass eine (KNX-)Gebäudesteuerung nicht nur zur Erhöhung des Wohnkomforts dient, sondern zudem auch ihren Beitrag zur Einsparung von Energiekosten leisten kann.

Wie sparen Sie ganz einfach Energie?

Eine intelligente Gebäudesteuerung ermöglicht Ihnen bereits mit einfach umzusetzenden Maßnahmen eine deutlich spürbare Energieersparnis, ohne dabei den Wohnkomfort zu senken. Beispiele sind:

- Die Beleuchtung ist nur dann angeschaltet, wenn sich jemand im Raum befindet.
- ► In Verbindung mit der Beschattungssteuerung wird die Beleuchtung auf die optimale Intensität heruntergedimmt.
- ► Sie werden automatisch auf offen gelassene Fenster hingewiesen und vermeiden, dass die teuer erkaufte Wärmeenergie aus dem Gebäude entweicht.
- ► Die Außenjalousien lassen vollautomatisch im Winter die Wärme in die Wohnräume, wohingegen sie im Sommer das Gebäude kühl halten.
- Die kontrollierte Wohnraumbelüftung arbeitet bedarfsgerecht mit reduzierter Leistung, abhängig von den aktuellen Luftqualitätswerten.
- Während der Nacht (bzw. in Abwesenheit) nicht benötigte Verbraucher werden automatisch abgeschaltet.
- Durch Smart Metering finden Sie nachvollziehbar heraus, wo und wann Energie verbraucht oder verschwendet wird.

Sie lernen in den folgenden Kapiteln dieses Buchs jede einzelne der erwähnten Automatisierungsmaßnahmen noch genauer kennen.

2.3 Wie bringe ich es meiner Frau bei?

Kommen wir zu einem weiteren ernsten Thema – wie bringe ich das Smart-Home-Vorhaben meiner Frau bei? Das Thema ist sogar so ernst, dass dafür eine eigene Bewertungsmessgröße eingeführt wurde – der *WAF* (Women Acceptance Factor). Sie müssen

Kapitel 3 Die Smart-Home-Ausbaustufen

Genau wie eine Pyramide entsteht ein Smart Home immer von unten nach oben. Ein wackeliges Fundament ist eine schlechte Voraussetzung für einen robusten Ausbau.

In welcher Reihenfolge gehen Sie den Ausbau Ihres Smart Homes an, welche Funktionen sind essenziell, und welche heben Sie sich für später auf? Ist eine Nachrüstung sinnvoll? Die folgenden beiden Abschnitte geben Ihnen die Antwort.

3.1 Die Smart-Home-Pyramide

Vielleicht erinnert Sie die Abbildung 3.1 ein bisschen an die oft publizierte Ernährungspyramide, die Art und Menge der für eine gesunde Ernährung empfohlenen Lebensmittelgruppen darstellt. Die Basis, also die mengenmäßig größte Gruppe, sind Flüssigkeiten wie Wasser, darüber folgen Obst und Gemüse, die Spitze bilden Süßigkeiten.

3.1.1 Entscheidend ist das Fundament

Auf eine »gesunde« Smart-Home-Struktur umgelegt, hätte die Pyramide einen Aufbau wie in Abbildung 3.1 gezeigt:

Abbildung 3.1 Die Smart-Home-Pyramide

Eine strukturierte Gebäudeverkabelung ist das Fundament und die Grundlage des intelligenten Heims. Je besser Sie hier ausgestattet sind, desto einfacher lässt sich darauf ein leistungsfähiger Automatisierungsbus aufsetzen. Mit den beiden unteren Schichten besitzen Sie bereits eine voll funktionsfähige Gebäudeautomatisierung, bestehend aus dezentralen intelligenten Geräten. Erweitert werden kann die Basis mit der Anbindung an eine IT-Infrastruktur (LAN), die den Einsatz von zentralen Logikmaschinen erlaubt. Eine dieser Zentralfunktionen ist die Visualisierungsoberfläche bzw. das über einfache Schalter und Taster hinausgehende (grafische) Bedien-Interface. Ist diese Schnittstelle eingerichtet, werden zusätzliche Anforderungen wie Multiroom-Audio oder andere Multimedia-Funktionen umgesetzt. Die Spitze der Pyramide bilden dann nur noch die einzelnen »Süßigkeiten«, etwa der mobile Smart-Home-Zugriff. Stimmt die Basis, also der Unterbau, ist die Smartphone-App kein Hexenwerk mehr, Sie bekommen sie fast schon automatisch dazu.

Die Pyramide soll Ihnen ebenfalls verdeutlichen, bei welchen Schritten Sie die meiste Anstrengung investieren sollten und in welcher Reihenfolge Sie dabei vorgehen. Es ergibt wenig Sinn, sich mit den Details einer Smartphone-basierten Steuerung zu beschäftigen, wenn der dazu notwendige Automatisierungsbus nicht vorhanden ist.

Ganz wie beim echten Pyramidenbau gilt auch hier: Die Spitze ist schnell mal gewechselt, aber um eine Basis auszutauschen oder gar ein Fundament einzufügen, muss ein Vielfaches an Aufwand betrieben werden.

3.1.2 Smart Home vorbereiten?

Ein KNX-System wird, im Vergleich zu einer herkömmlichen Installation, nach einer grundsätzlich anderen Philosophie umgesetzt. Eine Planung, bei der Sie zuerst konventionell verkabeln und später dann auf KNX umrüsten, wird aus zwei Gründen scheitern: Erstens ist dieses Vorgehen die teuerste Variante, und zweitens wird die Umrüstung, wenn Sie erst einmal eingezogen sind, wahrscheinlich sowieso nicht mehr stattfinden.

Meine Empfehlung lautet daher: Planen Sie von Anfang an mit KNX und verwerfen Sie den Versuch, zweigleisig zu fahren. Legen Sie sich direkt mit der Verkabelung die notwendige Basis und bauen Sie Ihr System Schritt für Schritt nach Ihren persönlichen Möglichkeiten aus. Besonders flexibel für spätere Erweiterungen und Änderungen wird Ihre Installation durch den großzügigen Einsatz von Reihenklemmen im Stromkreisverteiler. Wie genau eine solche strukturierte Verkabelung ausgeführt wird, erfahren Sie detailliert in Teil 3, »Vorbereitung und Planung«, dieses Buchs.

3.1.3 Schritt für Schritt erweitern

Nur in den allerwenigsten Fällen wird Ihr smartes Eigenheim von Anfang an komplett sein. Gute Erweiterungsfähigkeit und Flexibilität gehören zu den Grundprinzipien der intelligenten Gebäudeinstallation, daher müssen Sie sich an dieser Stelle wenig sorgen. In welchen Stufen der Ausbau sinnvoll vorangetrieben werden kann, zeigt Ihnen die Smart-Home-Pyramide in Abbildung 3.1. Dazu passende Erweiterungsschritte, die sich in der Praxis einfach umsetzen lassen, finden Sie in der nachfolgenden Auflistung. Generell gilt: Sparen Sie nicht an der Verkabelung, sondern führen Sie diese von Beginn an komplett aus. Ausgebaut wird Ihre Installation durch den Zukauf weiterer Geräte bzw. Busteilnehmer.

- Installieren Sie Reed-Kontakte an den Fenstern bzw. Eingangstüren direkt mit und führen Sie die Verkabelung bis in den Schaltschrank oder alternativ in Unterputzdosen. Die Abfrage der Eingänge kann zu einem späteren Zeitpunkt erfolgen, wenn Sie die benötigten Binäreingänge angeschafft haben.
- Schaltbare Steckdosen rüsten Sie bei Bedarf nach, anfangs genügt auch Dauerstrom (flexibel über Reihenklemmen auflegen).
- Die relativ teuren Dimmer können anfangs auch durch Schaltaktorkanäle realisiert werden, oder Sie weichen ganz auf DALI- bzw. DMX-Geräte aus (dazu Verkabelung gleich vorsehen).
- Sie kommen am Anfang ohne Heizungsaktoren aus, wenn Sie den Durchfluss der einzelnen Heizkreise am Heizkreisverteiler manuell einstellen.
- Mit Logikmaschinen können Sie die tollsten Wünsche umsetzen, aber Sie sollten sich damit erst auseinandersetzen, wenn die Basisinstallation funktioniert.
- Einen Automatisierungsrechner mit optionaler Visualisierung kann jederzeit später ergänzt werden, Gleiches gilt für Multimedia-Einbindung und mobile Fernsteuerung.

Was die Ausstattung Ihres Heims mit Schaltern und Tastern betrifft, denken Sie an den Grundsatz: Weniger ist mehr. Überlassen Sie das Schalten lieber einer Kombination aus Präsenzmeldern, Bewegungsmeldern, Szenen und zusätzlichen Logikfunktionen. Die Stellen, an denen Sie trotzdem Schalter benötigen, lassen sich ebenfalls Schritt für Schritt ausrüsten. Über eine zentrale Visualisierung können Sie alle nicht vorhandenen Schalter dennoch bedienen und kommen mit wenigen Einschränkungen sehr lange ohne die endgültigen Bedienelemente aus. Entgegen der obigen Auflistung benötigen Sie dafür aber bereits frühzeitig einen Automatisierungsrechner (eibPC, HomeServer, Lösung mit Linux-Server usw.).

3.1.4 Smart Home nachrüsten?

Intelligente Gebäudeautomatisierung lässt sich selbstverständlich auch nachrüsten. Die zwar mit viel Schmutz und Schweiß verbundene Variante, nachträglich Datenleitungen

(wie z. B. die grüne KNX-Twisted-Pair-Leitung) zu verlegen, ist dabei die robusteste, und Sie sollten sie bevorzugen, wo immer möglich.

Wesentlich staubfreier funktioniert es mit Funknetzwerken oder einem Powerline-System. Bei einer Nachrüstlösung, die rein auf Funk basieren soll, spricht vieles für EnOcean. Alternativ bieten sich ZigBee, Z-Wave oder das funkbasierte KNX RF an. Die KNX-Lösung über die Stromleitung (KNX PL) hat aktuell den Nachteil, dass eine durchgängige Produktpalette nur von den allerwenigsten Herstellern angeboten wird.

3.2 Was können Sie von Ihrem Smart Home erwarten?

Ein sinnvoller Ausbau beginnt immer mit den Grundfunktionen eines Smart Homes und wird erweitert durch intelligente Logikfunktionen, Visualisierung und Fernsteuerung. Die folgenden Ausbaustufen sollen Ihnen zum einen ein Gefühl dafür geben, was Sie von Ihrem künftigen Smart Home erwarten dürfen bzw. sollten, und zum anderen, in welcher Reihenfolge Sie dabei vorgehen. Beides ist natürlich nicht in Stein gemeißelt, sondern als eine an Ihre eigenen Prioritäten anpassbare Hilfestellung gedacht.

3.2.1 Die Grundfunktionen

Lassen Sie mich mit den *Basisfunktionen* beginnen. Die folgenden Beispiele haben gemeinsam, dass sie in der Regel einfach zu realisieren sind bzw. mit einfachen Komponenten wie Schaltaktoren oder Jalousieaktoren auskommen:

- Steckdosen einzeln oder in Gruppen ein- und ausschalten
- Beleuchtung schalten und dimmen, sowohl konventionelle Glühbirnen, Leuchtstofflampen und Halogenlampen wie auch Energiesparlampen und LEDs (auch mehrfarbig)
- Ventilsteuerung f
 ür Fu
 ßbodenheizung und Radiatorheizung, Ansteuerung von elektrischen Heizk
 örpern, Nachtabsenkung
- Steuerung einer Belüftungsanlage bzw. einer zentralen Wohnraumbelüftung
- Auf- und Zufahren von (Dach-)Fenstern und Oberlichtern, Öffnen der Haustür, Steuerung des Garagentors
- zeitabhängiges Schalten beliebiger Verbraucher (Treppenhauslicht, WC-Lüftung, Netzfreischaltung während der Nacht, Zirkulationspumpe, Gartenbewässerung, Dekobeleuchtung)
- Beschattungssteuerung jeglicher Art, z. B. Außenjalousien (Abbildung 3.2), Innenrollladen, Sonnensegel

Abbildung 3.2 Außenjalousien, in die Gebäudesteuerung integriert

3.2.2 Automatisierung durch erweiterte Sensorik

Erweitert man die Basisinstallation durch *zusätzliche Sensorik* (wie z. B. Temperatursensoren, Präsenzmelder, siehe Abbildung 3.3, Wetterstation), entstehen fast unbegrenzt viele weitere Anwendungsfälle. Hier eine Auswahl oft realisierter Funktionen:

- Beleuchtung abhängig von Außen- oder Innenhelligkeit schalten sowie abhängig davon, ob sich Personen im Haus/Raum aufhalten
- Konstantlichtregelung
- Beschattungssteuerung nach Außen- oder Innenhelligkeit, Temperatur, Wind, Regen und die zugehörigen Sicherheitsfunktionen (Windalarm, Regenalarm), Sonnenschutzfunktion
- Einzelraumtemperaturregelung, Schalten der Umwälzpumpe
- Überwachung von Fenstern und Türen, Abfrage, welche Fenster geöffnet oder gekippt sind
- Realisierung einer einfachen Alarmanlage, basierend auf Bewegungserkennung und Außenhautüberwachung (Fensterkontakte, Glasbruchsensoren usw.)
- ► luftqualitätsgeführte Steuerung einer Belüftungsanlage bzw. von elektrisch bewegbaren Fenstern

Abbildung 3.3 Deckenpräsenzmelder im Glasdesign

3.2.3 Bedienen, Visualisieren und Benachrichtigen

Ein weiterer Baustein des Smart Homes ist eine leistungsfähige, funktionale und zudem noch ansprechende Bedienung, eine Visualisierung und ein Benachrichtigungssystem. Die Möglichkeiten sind vielfältig und können zudem kombiniert werden:

- Statusanzeige von Zuständen auf einfachen Anzeigeelementen (Status-LEDs) von z. B. Meldungen und Störungen (Abbildung 3.4)
- ▶ komplette Bedienoberfläche für das Automatisierungssystem über Rechner, Touchpanel und Smartphone sowie über dedizierte LC-Displays
- ▶ visuelles Feedback von Zuständen, z. B. farbige Beleuchtung (LEDs), falls vergessen wurde, Fenster beim Verlassen des Hauses zu schließen
- akustische Meldungen oder Sprachnachrichten über Multiroom-Audiosystem
- ▶ Einblenden von Informationen in das TV-Bild (z. B. Türkommunikation, Telefonanrufe, Infomeldungen) oder auf einen PC-Bildschirm

Abbildung 3.4 Statusanzeige über LEDs: Störungen, Meldungen, Alarm

3.2.4 Fernsteuern

Der nächste logische Schritt nach der Bedienung des Smart Homes vor Ort ist die Möglichkeit, auch im nahen Umkreis (Terrasse) oder von unterwegs Aktionen des Automatisierungssystems auslösen und Zustände abfragen zu können. Eine Fernsteuerung ist, die richtige Infrastruktur vorausgesetzt, kein Problem:

- ▶ Bedienung über Infrarotfernbedienungen (raumbezogene Funktionen) oder Funkfernbedienungen (raumübergreifende Befehle)
- ► Steuerung der Hausautomatisierung über einen Internetfernzugang (Smartphone, siehe Abbildung 3.5, Webbrowser)
- ▶ Status- oder Warnmeldungen bei Abwesenheit auf mobiles Gerät (E-Mail, SMS, Push-Nachricht, Sprachnachricht)

Abbildung 3.5 Smartphone-Zugriff auf Ihr Haus

3.2.5 Szenen und Zentralfunktionen

Beinhaltet das Automatisierungssystem die notwendige Hardware (Aktoren, Sensoren, Logikbausteine) und eine entsprechend geplante Elektroverkabelung, lassen sich durch reine Softwarefunktionen bzw. Parametrierung beinahe unzählig viele Komfortfunktionen einbetten. Über sogenannte Szenen, die Sie automatisch oder manuell auslösen, fassen Sie zusammengehörende Aktionen zusammen, z. B.:

- Fernsehen-Szene (Beleuchtung im Wohnzimmer gedimmt, siehe Abbildung 3.6, Leselichter aus, Jalousien schließen, Telefon leise schalten)
- Szene für Duschen (z. B. Radio im Bad anschalten, Schminkspiegelbeleuchtung aus, elektrischer Heizkörper an, Effektbeleuchtung in Duschkabine an)
- Szene für nächtliches Austreten (z. B. in Schlafzimmersteckdosen eingebaute LED-Beleuchtung anschalten, Flurbeleuchtung in Marschrichtung WC auf 10 % dimmen, WC-Beleuchtung auf 50 % dimmen)
- beliebige individuelle Szenen wie z. B. die »Mama ruft zum Essen«-Taste (Musik in allen Kinderzimmern ferngesteuert auf stumm schalten, sodass Mutters Ruf auch gehört wird)

Abbildung 3.6 Gedimmtes Licht als Teil einer Beleuchtungsszene

Auf die gleiche Art und Weise werden auch *Zentralfunktionen* durch Umprogrammierung ermöglicht, ohne dass an der bestehenden Verkabelung irgendetwas verändert werden müsste. Um Ihnen ein Gefühl dafür zu geben, was mit nur geringem Aufwand möglich wird:

- Haus-aus-Taste: Abschalten kritischer Verbraucher, Sperren von Bedienelementen, Absenken der Raumtemperaturen oder Start der Anwesenheitssimulation (zeit- oder helligkeitsabhängig Beleuchtung schalten und Jalousien öffnen/schließen)
- Lüften-Taste: die Lamellen sämtlicher Jalousien öffnen, um effektive Querdurchlüftung zu ermöglichen
- Paniktaste: Einschalten von vordefinierten Leuchten zur Abschreckung des Eindringlings, Öffnen der Jalousien, Absetzen eines Anrufs, Böser-Wachhund-Lärm über Soundanlage

3.2.6 Vernetzung verwandelt unsmarte Geräte in smarte Geräte

Ein Smart Home ist ein *hybrides System*, es besteht in der Regel nicht nur aus einem einzigen Bus, sondern gewinnt seinen Charme durch das clevere Zusammenschalten und Kombinieren mehrerer spezialisierter Systeme, was vielfältige Möglichkeiten eröffnet. Eine Kopplung wird oft über sogenannte Gateways erreicht, in einigen Fällen aber auch über simple Digital- oder Analogeingänge. Aus einem *unsmarten* Gerät wird durch die richtige Vernetzung vielfach ein *smartes* Gerät. Beispiele für die Einbindung weiterer Systeme sind folgende:

- Über das Türkommunikationssystem können Sie das Kamerabild der Türstation in Ihrer Visualisierung anzeigen, eine Zutrittskontrolle realisieren, das Klingeln an der Haustür im Fernsehbild einblenden oder die Haustür mit Ihrem Smartphone von unterwegs öffnen.
- Ein (Multiroom-)Audiosystem spielt nicht nur Musik von einem zentralen Server, sondern kann akustische Einblendungen (Warnhinweise) ausgeben, Einbrecher durch eine Sirene abschrecken oder am Morgen die Familie sanft wecken.
- Das Videosystem streamt nicht nur Filme auf verschiedene Endgeräte, sondern kann ebenso Informationen, die von einem Automatisierungssystem generiert wurden, anzeigen (z. B. Warnung bei offenen Fenstern und eintretendem Regen).
- ► Eine Telefonanlage kann gewinnbringend an das Automatisierungssystem angebunden werden und übernimmt zusätzliche Aufgaben wie die Funktion einer Türglocke oder eines Türöffners.
- (Vernetzte) Rauchwarnmelder oder Wassermelder lösen nicht nur Alarm aus, sondern informieren den Smart-Home-Besitzer auch per SMS, Telefonanruf oder Ähnliches.
- ► Und nicht zu vergessen: Intelligente Haushaltsgeräte (Kühlschrank, Herd, Waschmaschine) und Helfer wie Saugroboter oder Mähroboter bieten oftmals einen Mehrwert, wenn sie in ein hybrides vernetztes Konzept aufgenommen werden.
- Smart-Metering-Daten (Haushaltsstrom, Fotovoltaikanlage usw.) lassen sich auswerten, aufbereiten und in einer Visualisierung präsentieren (Abbildung 3.7).

Abbildung 3.7 Smart Metering von Temperatur und Stromverbrauch

► Eine unsmarte KWL (kontrollierte Wohnraumlüftung) wird durch einen VOC-Sensor, ein paar 1-Wire-Temperatursensoren und die Nutzung des eingebauten O–10-V-Regeleingangs so in die Gebäudeautomation integriert, dass sogar der Hersteller der KWL staunt.

3.2.7 Gerüstet sein für die Zukunft

Selbstverständlich lässt sich eine Unmenge mehr an weiteren Anwendungsmöglichkeiten finden. Welche davon für Sie als künftigen Smart-Home-Besitzer wichtig sind, ist immer personenabhängig. Mit der oben stehenden Aufstellung sollten Sie jedoch die meisten Wünsche abdecken können.

Grenzen nach oben existieren theoretisch fast nicht. Was heute vielleicht noch ziemlich abgefahren erscheinen mag, kann morgen schon Ihre neue Lieblingsfunktionalität werden. Belegungsmatten unter den Matratzen zur Anwesenheitserkennung, Temperatursensoren unter der Badewanne zum Starten der Baden-Szene, eine Lichtschranke am Briefkasten zur Posteinwurferkennung – alles umsetzbar.

Im Laufe der Zeit, in der Sie Ihr Smart Home bewohnen, werden immer wieder weitere Wünsche dazukommen oder Bedürfnisse sich ändern. Das ist so gewollt, genau deswegen existieren flexible Automatisierungssysteme und genau deswegen soll Ihnen dieses Buch die notwendigen Kenntnisse vermitteln, um auch in Zukunft bestens für neue Ideen gerüstet zu sein.

Kapitel 5 **Die Elektrik im Wohnhaus**

Eine gut durchdachte Smart-Home-Umsetzung beginnt bereits im Stromkreisverteiler und beinhaltet sowohl die vorschriftsmäßige Leitungsverlegung als auch die Wahl der passenden Installationsleitungen.

Sie lernen in diesem Kapitel ein paar sehr wichtige Grundlagen der Elektroinstallation kennen, angefangen von den Einrichtungen im Stromkreisverteiler (LS, SLS, RCD) über die Grundsätze der Leitungsverlegung bis hin zu einer Übersicht der wichtigsten Leitungstypen. Außerdem dabei: die IP-Schutzarten.

Das erlangte Grundwissen wird Ihnen für Ihre eigenen Umsetzungen hilfreich sein, aber es macht Sie natürlich nicht zu einer Elektrofachkraft. Arbeiten am elektrischen Hausnetz gehören generell nicht in unqualifizierte Hände, jedoch können Sie einen Großteil der anfallenden Tätigkeiten unter der Aufsicht einer qualifizierten Elektrofachkraft in Form von Eigenleistungen durchführen.

5.1 Überstromschutzeinrichtungen und Fehlerstromschutzeinrichtungen

In einem Stromkreisverteiler tummelt sich, auch bei einer konventionellen Elektroinstallation, eine ganze Reihe unterschiedlicher Einrichtungen. Welche das sind und wie sie funktionieren, erfahren Sie in den nächsten Abschnitten.

5.1.1 Was ist Selektivität?

Selektivität in einem Stromkreis liegt dann vor, wenn im Fehlerfall nur die Überstromschutzeinrichtung abschaltet, die unmittelbar vor der Fehlerstelle liegt. Als wichtige Funktion des Netzschutzes sorgt sie in einem Stromnetz, das von einem zentralen Punkt aus gespeist wird (wie beim Hausanschluss von Wohngebäuden), dafür, dass trotz des Fehlers möglichst große Teile der elektrischen Anlage in Betrieb bleiben können und nur das Sicherungselement vor der Fehlerstelle auslöst. Selektivität kann bei in Reihe geschalteten Überstromschutzeinrichtungen bzw. Fehlerstromschutzschaltern entweder durch unterschiedlich hohe Auslöseströme der Schutzeinrichtung erreicht werden (Stromselektivität) oder durch eine unterschiedliche zeitliche Verzögerung (Zeitselektivität). In einer modernen Elektroinstallation wird auf eine Reihenschaltung von SLS und LS gesetzt. Der normale Leitungsschutzschalter (LS) löst unabhängig von seinem Nennstrom bei einem vollständigen Kurzschluss sofort aus. Ein selektiver Leitungsschutzschalter (SLS) wird vor den LS geschaltet (also zwischen Hausanschlusskasten und RCD), seine elektromagnetische Auslösung ist auf verzögertes Ansprechen ausgelegt.

5.1.2 Der Leitungsschutzschalter (LS-Schalter)

Ein *Leitungsschutzschalter* (LS-Schalter) ist ein strombegrenzender Selbstschalter, der nach dem Auslösen – anders als eine Schmelzsicherung – wieder eingeschaltet werden kann. Als Überstromschutzeinrichtung wird er in Niederspannungsnetzen (wie Ihrem 230-V-Netz zu Hause) eingesetzt. Seine Aufgabe ist nicht, ein angeschlossenes Gerät vor einem Defekt zu bewahren, sondern der Schutz der Leitungen vor Beschädigung durch Erwärmung infolge eines zu hohen Stroms.

Die Funktionsweise des Abschaltmechanismus

Beim Einschalten des LS-Schalters wird eine Speicherfeder gespannt, die bei einer Auslösung ein schnelles Öffnen der Kontakte bewirkt. Der Abschaltmechanismus eines LS löst auf vier verschiedene Arten aus:

- Überlast (thermische Auslösung): Übersteigt der Strom, der durch den LS fließt, den vorgegebenen Nennwert eine längere Zeit, trennt ein Bimetallstreifen, der sich durch Erwärmung des durchfließenden Stroms verbiegt, die Verbindung am Kontakt der Zuleitung auf.
- 2. Kurzschluss (elektromagnetische Auslösung): Im Kurzschlussfall erfolgt die Auslösung durch einen vom Strom durchflossenen Elektromagneten innerhalb weniger Millisekunden. Eine sogenannte Freiauslösung stellt sicher, dass die Auslösung auch dann sofort erfolgt, wenn im Kurzschlussfall der Schalthebel gerade betätigt oder in der Ein-Stellung festgehalten wird.
- 3. **Manuell**: Über einen an der Vorderseite angebrachten Kippschalter kann ein Stromkreis am LS von Hand abgeschaltet werden.
- 4. **Zusatzmodule**: Viele LS erlauben das seitliche Anstecken von Hilfsschaltern, die beim Auslösen gleichzeitig den Kippschalter des LS mechanisch umlegen.

Bauform, Nennstrom und Auslösecharakteristik

LS werden in ein- oder mehrpoliger Ausführung mit *Netzströmen* bis 125 A und auch mit Neutralleiterschalter angeboten. Ein dreipoliger LS kommt im Privatbau z. B. für die Absicherung der Herdanschlussleitung zum Einsatz und sorgt für die allpolige Abschaltung, wenn in einem der drei Außenleiter eine Auslösung erfolgt. LS werden auf Hutschienen montiert und benötigen in einpoliger Ausführung eine Teilungseinheit (TE), zwei- und dreipolige LS brauchen entsprechend zwei oder drei TE.

LS sind für unterschiedliche Nennströme erhältlich: 6 A, 10 A, 13 A, 16 A, 20 A, 25 A, 32 A bis hin zu 125 A (Ampere). Am häufigsten findet man im Privatbau die 16-A-Typen, für Beleuchtung oft auch nur 10 A.

Neben Bauform und Nennstrom unterscheidet man LS nach der *Auslösecharakteristik*. Diese klassifiziert über eine Zeit-Strom-Kennlinie die Abschaltzeit eines LS bei verschiedenen Stromstärken. In Deutschland werden in Wohn- und Büroräumen in der Regel LS der Charakteristik B eingesetzt. Der Auslösestrom eines LS der Charakteristik B beträgt das 1,13- bis 1,45-Fache seines Nennstroms (bei 30 °C, 1 Stunde) für die thermische Auslösung und das 3- bis 5-Fache im Kurzschlussfall (magnetisch) bei Wechselstrom mit 50 Hz. Ein LS der Charakteristik C ist für größere Einschaltströme ausgelegt (wie z. B. Maschinen oder größere Lampengruppen) und löst im Kurzschlussfall erst beim 5- bis 10-Fachen des Nennstroms aus. Trägt ein LS in seiner Typenbezeichnung beispielsweise das Kürzel B16, handelt es sich um ein Gerät der Charakteristik B mit einem Nennstrom von 16 A.

Die richtige Auslegung der zu installierenden LS (Abbildung 5.1) und Überstromschutzeinrichtung insgesamt ist Aufgabe des Elektrikers und hängt unter anderem von der Art der verwendeten Leitung, der Umgebungstemperatur, der Verlegeart, der Häufung von Leitungen, der Selektivität und der Art des angeschlossenen Geräts ab.

Abbildung 5.1 Leitungsschutzschalter (LS-Schalter), Typ B16

5.1.3 Der Fehlerstromschutzschalter

FI-Schutzschalter, auch RCD (Residual Current Protective Device, englisch für *Fehler-stromschutzeinrichtung*), haben die Aufgabe, gefährlich hohe Fehlerströme gegen Erde zu verhindern und dadurch die Gefahr lebensgefährlicher Stromunfälle zu reduzieren. RCDs werden im Stromkreisverteiler den üblichen Überstromschutzeinrichtungen (z. B. LS) vorgeschaltet. Ein LS schützt eine Leitung, ein RCD schützt den Menschen. Der RCD kann zwar nicht verhindern, dass ein Fehlerstrom durch den Körper einer Person fließt,

92

wohl aber die zeitliche Dauer auf ein Maß reduzieren, die ein Mensch verkraften kann. Zusätzlich reduziert er die Möglichkeit der Brandauslösung infolge eines Fehlerstroms, der ohne installierten RCD und über längere Zeit hinweg als Brandursache infrage kommen könnte.

Die Funktionsweise eines RCD

Ein RCD trennt bei Überschreiten eines bestimmten Differenzstroms – im Privatbau sind das in der Regel 30 mA – den überwachten Stromkreis allpolig vom restlichen Netz. Er vergleicht dazu (über einen Summenstromwandler) die Höhe des hinfließenden mit der des zurückfließenden Stroms. Die vorzeichenrichtige Summe aller durch den RCD fließenden Ströme ist bei einer intakten Anlage gleich null. Alles was in den Verbraucher fließt, muss auch wieder zurückfließen. Falls nicht, ist folglich ein Differenzstrom aufgetreten, beispielsweise über eine beschädigte Isolierung oder durch einen menschlichen Körper.

So wertvoll ein RCD auch für den Schutz des eigenen Lebens ist, er deckt nicht alle Fehlerfälle ab. Leider funktioniert das Summenstromprinzip nämlich nur, wenn ein Strom tatsächlich aus der Anlage »entweicht«, also über Erde abfließt. Berührt eine gegen Erde isolierte Person sowohl den L-Leiter als auch N, fließt kein Fehlerstrom. Genauso wenig greift die Schutzeinrichtung bei gleichzeitigem Berühren der Außenleiter L1, L2 oder L3, ohne dass ein Teil des Fehlerstroms gegen Erde fließen kann.

RCD-Typen

RCDs werden, je nach Art des Fehlerstroms, den sie erfassen können, in unterschiedliche Typen eingeteilt:

- Typ AC erkennt nur rein sinusförmige Fehlerströme und ist in Deutschland nicht zugelassen.
- ► **Typ A** ist der in der Regel im Privatbau eingesetzte RCD, der zusätzlich zu den sinusförmigen Wechselströmen auch pulsierende Gleichfehlerströme detektiert.
- ► **Typ B**, der allstromsensitive Fehlerstromschutzschalter, deckt alle Fehlerfälle von Typ A ab und dazu glatte Gleichfehlströme. Hierfür ist jedoch eine zusätzliche Stromversorgung notwendig.

Gängige *Bemessungsdifferenzströme* sind 10 mA, 30 mA, 100 mA, 300 mA, 500 mA und 1 A, wobei für den Personenschutz ein maximaler Ansprechstrom von 10 mA oder 30 mA und für den Brandschutz einer von 300 mA vorgeschrieben ist. Die maximale Auslösezeit ist laut VDE-Norm DIN VDE 0100-410:2007 auf 400 ms bei einfachem Nennfehlerstrom und weniger als 40 ms bei 5-fachem Nennfehlerstrom festgelegt.

Ein RCD (Abbildung 5.2) begrenzt die Höhe eines Fehlerstroms übrigens nicht, er sorgt lediglich dafür, dass bei Erreichen der maximalen Differenzstromhöhe der Fehlerstrom abgeschaltet wird. Bis zu diesem Moment fließt jedoch der maximale Strom, der durch die installierte Überstromschutzeinrichtung zugelassen wird. RCDs werden üblicherweise auf Hutschienen montiert und benötigen dort 4 TE an Platz.

Abbildung 5.2 Eingebauter Fehlerstromschutzschalter (RCD)

Ein Fehlerstromschutzschalter muss nicht zwangsläufig immer im Stromkreisverteiler installiert sein. Spezielle RCD-Schukosteckdosen erfüllen zumindest abgangsseitig die gleiche Aufgabe. Eine solche Steckdose mit einem Bemessungsfehlerstrom von 30 mA bekommen Sie z. B. von der Firma Jung (im Internet unter *http://www.jung.de/de/online-katalog/62508946*).

Prüfung mit der Testtaste

RCDs besitzen eine Testtaste, mit der sich die Funktion des Geräts überprüfen lässt. Bei Betätigung der Testtaste erzeugt der RCD intern einen gewollten Fehlerstrom, der die Auslösestromstärke übersteigt und dadurch den Stromkreis allpolig vom Netz trennt. Alle sechs Monate sollte der Nutzer die korrekte Funktion seiner RCDs mittels der Testtaste überprüfen und nach Auslösen den Stromkreis über den RCD-Schalthebel wieder in Betrieb setzen. Allerdings stellt die korrekt funktionierende Auslösung nur sicher, dass der RCD selbst funktioniert, nicht aber, dass die Stromkreise zu den Verbrauchern richtig verdrahtet sind. Dazu bedarf es einer geeigneten Prüfung durch eine Elektrofachkraft.

5.1.4 Der selektive Leitungsschutzschalter (SLS-Schalter)

Ein *selektiver Leitungsschutzschalter* (SLS-Schalter; siehe Abbildung 5.3), auch selektiver Hauptleitungsschutzschalter (SH-Schalter) genannt, ist ein strombegrenzendes und rein mechanisch funktionierendes Schaltgerät, das anstelle der früher üblichen Sicherungen vor den Stromzählern der Energieversorgungsunternehmen zum Einsatz kommt. Der SLS genügt den Selektivitätsanforderungen für Überstromschutzeinrichtungen (siehe Abschnitt 5.1.1, »Was ist Selektivität?«) und darf daher vor nachgeschalteten LS-Schaltern installiert werden. Im Gegensatz zu diesen schaltet der SLS den Strom im Kurzschlussfall nicht sofort ab, sondern verzögert. Wie die LS-Schalter sind auch die SLS mit einem Kippschalter ausgestattet, durch den die Anlage geschaltet werden kann, was auch dem Laien erlaubt ist. Ein selektiver Leitungsschutzschalter ist 2 TE breit und wird normalerweise zur Absicherung im Vorzählerbereich auf einer Sammelschiene (statt Hutschiene) montiert.

Abbildung 5.3 Drei SLS-Schalter

5.1.5 Die Kombination aus Fehlerstromschutzschalter und Leitungsschutzschalter

Als Kombination aus RCD und LS stellt der RCBO (Residual Current Operated Circuit-Breaker with Overcurrent Protection), auch FI/LS-Schalter genannt, eine interessante Mischung dar (siehe Abbildung 5.4). Er vereint in kompakter Bauform (2 TE) Fehlerstromschutzschalter und Leitungsschutzschalter in nur einem Gerät und sorgt dadurch dafür, dass jeder Stromkreis seinen eigenen Fehlerstromschutzschalter erhält. Für Verbraucher im Außenbereich oder z. B. für Stromkreise, die lediglich Kühl- und Gefriergeräte versorgen und aus Gründen der Unabhängigkeit von anderen Stromkreisen einen eigenen RCD aufweisen sollten, bietet sich der RCBO geradezu an. Als Nachteil gegenüber der herkömmlichen RCD-LS-Lösung ist jedoch der höhere Preis zu nennen.

Abbildung 5.4 Zwei RCBOs (links) neben einem LS (rechts)

5.2 Leitungsverlegung und Installationszonen

Im Wohnbereich erfolgt die Leitungsverlegung in den allermeisten Fällen unter Putz oder innerhalb von Betonwänden und Trockenbauwänden. Einer fertigen Wand bzw. Decke sehen Sie am Ende nicht mehr an, wo genau während der Elektroinstallation die Leitungen verlegt wurden. Die unsichtbare Verlegeart ist optisch und ästhetisch gesehen natürlich konkurrenzlos, hat aber den großen Nachteil, dass Sie stets Gefahr laufen, eine unsichtbare Leitung anzubohren, durchzuschrauben oder sonst wie zu beschädigen. Im besten Fall löst eine Überstrom- oder Fehlerstromschutzeinrichtung (LS, RCD) aus, und Sie werden direkt auf die Beschädigung aufmerksam. Im schlimmsten Fall erleiden Sie einen elektrischen Schlag, oder Sie rufen durch eine unglückliche Verletzung der Adern einen schleichenden Fehler hervor, der irgendwann einmal zu einem Kabelbrand führen kann.

In der Norm DIN 18015 (»Elektrische Anlagen in Wohngebäuden Teil 1 bis 3«) sind daher normierte Zonen definiert, innerhalb deren die Leitungsführung zu erfolgen hat. Man nennt sie Installationszonen.

5.2.1 Grundsätze der Leitungsverlegung

Leitungen müssen so geführt werden, dass sie vor mechanischer Beschädigung (die weitere Schäden wie Personenschäden bzw. Sachschäden nach sich ziehen könnten) geschützt sind. Erreicht werden kann das entweder durch einen mechanischen Schutz (Verkleidung) oder durch die Lage der Leitungsführung. Generell gilt:

- ▶ Leitungen dürfen in Wänden nur senkrecht oder waagerecht verlegt werden.
- In Decken und Böden ist der exakte Leitungsweg nicht vorgeschrieben, der kürzeste Weg ist erlaubt.
- ► Eine feste Verkabelung ist gegenüber der beweglichen Verkabelung zu bevorzugen.
- ► Leitungen müssen außerhalb des Handbereichs von Personen verlegt werden.
- In Lüftungskanälen, Schornsteinzügen und Schornsteinwangen ist die Verlegung nicht erlaubt.
- Mindestabstände zu Blitzschutzanlagen und warmen Rohrleitungen sind einzuhalten.
- Im Erdreich müssen Mantelleitungen (z. B. NYM) durch Schutzrohre oder geschlossene Installationskanäle geschützt werden.
- ▶ Nur Kabel (Erdkabel: NYY-J) dürfen direkt in die Erde gelegt werden.

5.2.2 Die Installationszonen

Durch genormte Installationszonen für verdeckte Leitungen sowie für Schalter und Steckdosen und durch der Regelung, dass Leitungen nur senkrecht oder waagerecht verlegt werden dürfen, soll der ungefähre Verlauf der (nicht sichtbaren) Leitungen nachvollziehbar werden.

Die Vorzugsmaße sind bei horizontaler Verlegung:

- ▶ 30 cm unter der fertigen Deckenfläche
- ► 30 cm über der fertigen Fußbodenfläche (der spätere Bodenaufbau ist zu berücksichtigen)

Bei vertikaler Verlegung liegen die Vorzugsmaße bei:

▶ 15 cm neben Rohbaukanten oder -ecken sowie neben Türen und Fenstern

Schalter besitzen folgende Vorzugsmaße:

▶ Wohnräume: 105 cm über der fertigen Fußbodenfläche, Küchen: 115 cm

Für Schalter, Steckdosen und Abzweigdosen, die außerhalb dieser Bereiche liegen, gilt:

 mit senkrechter Stichleitung aus der am nächsten gelegenen waagerechten Installationszone versorgen

Installationszonen in Wohnräumen

In Wohnräumen sind um das Vorzugsmaß herum eine 30 cm breite waagerechte Verlegezone sowie eine 20 cm breite senkrechte Verlegezone definiert. Türen mit einem Flügel besitzen eine senkrechte Verlegezone in einem Abstand von 10 cm auf der Griffseite. Bei Türen mit zwei Flügeln befindet sich diese Zone auf beiden Seiten. Eine Installationszone entfällt an der Stelle, an der sie durch eine Wandöffnung, ein Fenster oder eine Tür unterbrochen wird (vergleiche Abbildung 5.5).

Abbildung 5.5 Die Installationszonen in Wohnräumen

Installationszonen in Küchen und Arbeitsräumen

Eine zusätzliche mittlere Installationszone ist für Arbeitsräume und Küchen, in denen eine Arbeitsfläche vor der Wand verbaut ist, vorgegeben. Sie ist 30 cm breit und reicht von 100 cm bis 130 cm, gerechnet von der Oberkante des Fertigfußbodens (abgekürzt OKFF). Schalter und Steckdosen werden mittig in diese Zone gesetzt, was einer Vorzugshöhe von 115 cm entspricht (vergleiche Abbildung 5.6).

5.2.3 Schutzbereiche für Räume mit Badewanne oder Dusche

Für Räume mit einer Badewanne oder einer Dusche gelten besondere Anforderungen, die der zusätzlichen Gefährdung durch erhöhte Feuchtigkeit geschuldet sind. Feuchtigkeit verringert den menschlichen Körperwiderstand deutlich und lässt in Verbindung mit dem Erdpotenzial gefährlich höhere Ströme durch den menschlichen Körper fließen. Ein Bad wird in vier verschiedene Schutzzonen bzw. Schutzbereiche unterteilt:

- 1. **Schutzbereich O**: Innenbereich einer Badewanne oder Dusche mit Wanne. Ebenerdige Duschen besitzen keinen Schutzbereich O.
 - Nur Betriebsmittel mit einem Schutzgrad von mindestens IPX7 sind erlaubt (siehe Abschnitt 5.4, »Die IP-Schutzarten«).
 - Steckdosen, Abzweigdosen und Schalter sind verboten.
- Elektrische Verbraucher dürfen nur dann betrieben werden, wenn ihre Betriebsspannung maximal 12 V AC oder 30 V DC beträgt und der Trafo außerhalb des Schutzbereichs 1 liegt. Außerdem muss das Gerät fest angeschlossen und vom Hersteller dafür zugelassen sein (Beispiel: Badewannenheizung).
- 2. **Schutzbereich 1**: Erweiterung des Bereichs O bis auf mindestens 2,25 m Höhe über dem Fußboden. Liegt der Wasseranschluss (z. B. Dusche) höher, erweitert sich der

Bereich 1 entsprechend. Der Schutzbereich 1 bei ebenerdige Duschen gilt innerhalb eines Radius von 120 cm um den Duschkopf.

- Nur Betriebsmittel mit einem Schutzgrad von mindestens IPX4 sind erlaubt.
- Steckdosen, Abzweigdosen und Schalter sind verboten.
- Fest montierte elektrische Durchlauferhitzer oder Warmwasserspeicher sind zulässig, wenn sie spritzwassergeschützt sind.
- Andere Installationsgeräte sind zulässig, wenn deren Betriebsspannung 25 V AC oder 60 V DC nicht überschreitet. Ein versorgender Trafo muss außerhalb von Bereich 0 und 1 angebracht werden.
- 3. Schutzbereich 2: Verläuft 60 cm um den Bereich 1 und an den Wandseiten bis zu einer Höhe von mindestens 2,25 m der Wände ab der Oberkante des Fertigfußbodens.
 - Entspricht Bereich 1, jedoch sind zusätzlich die Installation von Leuchten (mindestens IPX4) und der Anschluss von Waschmaschinen möglich.
 - Steckdosen und Schalter sind nicht erlaubt.
- 4. **Schutzbereich 3**: Reicht bis zu einem Abstand von 2,40 m um den Bereich 2. Der Abstand zur Dusche oder Badewanne beträgt demnach 3 m.
 - Steckdosen sind zulässig, wenn sie über einen Fehlerstromschutzschalter mit einem Bemessungsdifferenzstrom von maximal 30 mA geschützt sind.

Leitungen, Schalter und Steckdosen sind in den Bereichen O, 1 und 2 nicht erlaubt, es sei denn, sie dienen der Versorgung der Verbrauchsmittel, die in den Bereichen 1 und 2 fest angebracht sind. Dort sind auch Zuleitungen erlaubt, wenn sie senkrecht und mindestens 6 cm tief in der Wand verlegt und von hinten in die Geräte geführt sind.

Trotz genormter Zonen: zwei unterstützende Maßnahmen

Trotz dieser genormten Installationszonen und Schutzbereiche sollten Sie sich, insbesondere bei Altbauwohnungen, nicht blind auf die Einhaltung der Normen verlassen, sondern besser mit einem *Leitungssuchgerät* oder Multidetektor ermitteln, wo die Stromleitungen tatsächlich verlaufen. Ein erschwingliches Gerät ist z. B. das Ortungsgerät Bosch GMS 120 Professional (siehe auch den Abschnitt 18.1.7).

Obwohl es Zusatzaufwand bedeutet: Fotografieren Sie grundsätzlich jede Wand und jede Decke, bevor sie verputzt oder verkleidet wird. Platzieren Sie einen oder zwei Meterstäbe zur Bemaßung von Referenzpunkten mit auf das Foto (Abbildung 5.7) und legen Sie alle Bilder mit eindeutiger Bezeichnung der Wand (am besten mit Referenz auf einen Grundrissplan) elektronisch ab. Diese Fotosammlung wird Ihnen in Zukunft immer wieder als wertvolle Quelle dienen, ziehen Sie sie stets für alle anstehenden Arbeiten an Decken und Wänden heran, auch wenn es sich nur um das Aufhängen eines Bilds handelt.

Abbildung 5.7 UP-Dose und Leerrohrführung mit Referenz auf den Leitungsplan

5.3 Die wichtigsten Installationsleitungen

Im Kapitel zu den verschiedenen Installationsmaterialien (vergleiche Abschnitt 20.1, »Leitungen«) erfahren Sie die notwendigen Details zu den unterschiedlichen Leitungstypen, die häufig im privaten Wohnungsbau eingesetzt werden. Tabelle 5.1 soll Ihnen an dieser Stelle bereits einen ersten Überblick darüber bieten, mit welchen Bezeichnungen Sie konfrontiert werden.

Leitung	Beschreibung	Einsatz	Preis pro m (ca.)
NYM-J 5x1,5	fünfadrige Kunststoff- mantelleitung für die feste Verlegung, 1,5mm ² Nenn- querschnitt	Standardinstallations- leitung für Steckdosen, Beleuchtung, DALI	0,85€
NYM-J 5x2,5	fünfadrige Kunststoff- mantelleitung für die feste Verlegung, 2,5mm ² Nenn- querschnitt	Standardinstallations- leitung für Steckdosen, Beleuchtung, DALI, grö- ßere Verbraucher (z.B. Herd)	0,93€
NYM-J 5x4,0	Kunststoffmantelleitung, 4 mm ² Nennquerschnitt	Kraftsteckdose (CEE- Wandsteckdose)	2,48 €

Tabelle 5.1 Häufig verwendete Installationsleitungstypen

Leitung	Beschreibung	Einsatz	Preis pro m (ca.)
H07V-U 1,5	PVC-Adernleitung (starr)	Einzeladern zum Einzie- hen in Elektroinstallati- onsrohre	0,15€
J-Y(St)Y 2x2x0,8 mit KNX-Logo	EIB/KNX-Busleitung, von der KNX Association zerti- fiziert	 KNX (vorzugsweise in Grün) 1-Wire (nicht in Grün, z. B. in Lila) 	0,39€
J-Y(St)Y 2x2x0,8	Installationskunststoff- kabel (vier Adern) für Signalanlagen und Fern- sprecheinrichtungen	 Brandmeldekabel (vorzugsweise in Rot) Türkommunikation Fensterkontakte andere Sensoren 1-Wire 	0,38€
Koaxialkabel	zweipolige Kabel mit kon- zentrischem Aufbau	Verbindung von Satelli- tenantenne oder Kabel- anschluss und Receiver	0,65€
Cat-Kabel	Twisted-Pair-Kabel mit verdrillten Adernpaaren und elektrisch leitendem Schirm in verschiedenen Ausführungen, z. B. STP oder S/FTP (siehe dazu Abschnitt 20.1.5)	 Ethernet-Verkabe- lung (Cat.7) DMX 512 (Cat.5, Cat.6, Cat.7) 	0,76€
A05RN-F 4G0,75	flexible Leitung (vieradrig) für geringe mechanische Beanspruchungen in tro- ckenen, feuchten und nas- sen Räumen sowie im Freien, UV- und ozonbe- ständig	Außenrollladen, Außen- jalousien, passt gut auf Standard-Hirschmann- Stecker	0,90€
Ölflex 4x1	flexible Anschlussleitung (vieradrig) für mittlere mechanische Beanspru- chungen in trockenen, feuchten und nassen Räumen	Außenrollladen, Außen- jalousien, passt gut auf Standard-Hirschmann- Stecker	0,62€

Tabelle 5.1 Häufig verwendete Installationsleitungstypen (Forts.)

Leitung	Beschreibung	Einsatz	Preis pro m (ca.)
Flachleitung LIYZ 2x1,5mm ² oder 2x2,5mm ²	flexible Lautsprecherlei- tung (zweiadrig)	Verbindung von Ver- stärker mit Lautspre- cher	0,74 € (2x2,5mm²)
NYY-J 5x1,5 oder NYY-J 5x2,5	fünfadriges Niederspan- nungskabel für die Ver- legung im Erdreich (Min- destverlegetiefe: 0,6 m), im Freien, in Beton und bis zu zwei Wochen in Wasser	Gartenbeleuchtung, Gartensteckdosen, Ver- bindung zu Geräte- schuppen	0,97€ (5x2,5)

 Tabelle 5.1 Häufig verwendete Installationsleitungstypen (Forts.)

Einige typische Installationsleitungen finden Sie entmantelt in Abbildung 5.8. Von links nach rechts sind das NYM-J 5x1,5, Koax, Cat, J-Y(St)Y 2x2xO,8 (KNX), J-Y(St)Y 2x2xO,6, YS-LY-JZ.

Abbildung 5.8 Wichtige Installationsleitungen

Sehr oft wird Ihnen im Umfeld der Gebäudesteuerung die grüne EIB/KNX-Leitung begegnen. Die von der KNX Association zertifizierte Busleitung weist gegenüber dem herkömmlichen J-Y(St)Y-Typ eine Reihe von Vorteilen auf:

Warum ist es wichtig, die zertifizierte KNX-Busleitung zu verwenden?

Nur das grüne, standardisierte KNX-TP1-Kabel garantiert

- die maximale Anzahl von Busteilnehmern,
- ► die maximale Leitungslänge einer Linie,
- den maximalen Abstand von zwei Busteilnehmern einer Linie sowie
- die maximale Anzahl von Busteilnehmern pro Linie.

5.4 Die IP-Schutzarten

Bei der Auswahl von elektrischen und elektronischen Geräten werden Sie häufig mit den *IP-Schutzarten* (englisch IP = International Protection) konfrontiert werden. Die IP-Klassifizierung nach DIN EN 60529 hilft Ihnen, zu entscheiden, ob eine Komponente für einen bestimmten Verwendungszweck geeignet ist. Dazu zwei Beispiele:

- 1. Für ein LED-Stripe, das Sie in der Nähe der offenen Duschnische installieren möchten, benötigen Sie ein Modell mit Schutzklasse IP65 (staubdicht und strahlwassergeschützt) oder besser sogar IP68 (staubdicht und wasserdicht). Für den LED-Stripe bedeutet das, er muss rundum vergossen sein.
- 2. Eine Steckdose im Außenbereich benötigt mindestens IP44 (Schutz gegen Eindringen, Durchmesser >= 1 mm, Schutz gegen allseitiges Spritzwasser). Eine IP44-Steckdose besitzt zwei Dichtungen und einen Klappdeckel (Abbildung 5.9).

IP-Ziffer 1	Schutz gegen Eindringen von Fremdkörpern	IP-Ziffer 2	Schutz gegen Wasser
0	nicht geschützt	0	nicht geschützt
1	Schutz gegen Eindringen von festen Fremdkörpern mit Durchmesser >= 50 mm	1	Schutz gegen senkrecht trop- fendes Wasser
2	Schutz gegen Eindringen von festen Fremdkörpern mit Durchmesser >= 12,5mm (Größe eines Fingers)	2	Schutz gegen tropfendes Wasser bis 15°-Neigung
3	Schutz gegen Eindringen von festen Fremdkörpern mit Durchmesser >= 2,5 mm (Größe einer Werkzeug- spitze)	3	Schutz gegen Sprühwasser bis 60°-Neigung
4	Schutz gegen Eindringen von festen Fremdkörpern mit Durchmesser >= 1 mm (Größe einer Drahtspitze)	4	Schutz gegen allseitiges Spritzwasser
5	staubgeschützt	5	Schutz gegen Strahlwasser aus beliebigem Winkel

Tabelle 5.2 Schutzartenübersicht

IP-Ziffer 1	Schutz gegen Eindringen von Fremdkörpern	IP-Ziffer 2	Schutz gegen Wasser
6	staubdicht	6	Schutz gegen starkes Strahl- wasser
		7	Schutz gegen zeitweiliges Untertauchen
		8	Schutz gegen andauerndes Untertauchen

Tabelle 5.2 Schutzartenübersicht (Forts.)

Abbildung 5.9 IP20-Schalterprogramm für Innenräume (links) und IP44 (rechts) für den Außenbereich

Kapitel 7 Gebäudeautomation verstehen

Gebäudeautomation funktioniert dann am besten, wenn es gelingt, möglichst viele Gewerke einzubeziehen. Dadurch vermeiden Sie Insellösungen und lassen Ihr Heim als Ganzes intelligent agieren.

Grundsätzlich sind alle Gewerke irgendwie automatisierbar, manche recht einfach (Beleuchtung), manche aufwendiger (Multimedia). Es existiert heute jedoch keine Technik, die es erlauben würde, mit ein und demselben System alle Anforderungen abzudecken. Das Bestreben muss daher sein, mit einem robusten und standardisierten Basisautomatisierungskonzept möglichst breit gefächerte Bereiche zu erfassen und nur die verbleibenden Gewerke mit Speziallösungen einzubinden. Tasten wir uns also vor und schauen wir uns an, welche Systeme es gibt und welche Gewerke auf die Vernetzung warten.

7.1 Das Smart Home umfasst alle Gewerke

Unter einem *Gewerk* versteht man eine handwerkliche Arbeit im Bauwesen, wie z. B. Baumeister- und Elektroarbeiten oder auch Arbeiten im Bereich Heizung/Sanitär. Wenn man von Heimautomation spricht, gliedert man den Begriff Gewerk gern noch viel feiner auf und erhält dadurch einen Katalog an Themengebieten, die bei einer umfassenden Smart-Home-Planung adressiert werden sollten.

7.1.1 Welche Gewerke werden automatisiert?

Wie Sie der Tabelle 7.1 entnehmen können, gibt es fast nichts, was sich nicht in ein intelligentes und vernetztes Zuhause einbinden lässt. Natürlich ist die Einbindung nicht für alle Gewerke gleich schwierig umzusetzen. Eine smarte Beleuchtungssteuerung ist beispielsweise relativ einfach, ein Multiroom-Audiosystem hingegen durchaus komplex in der Umsetzung.

Gewerk	Beschreibung	Komplexität
Beleuchtung	gedimmtes und ungedimmtes Licht	einfach
	LEDs, Effektbeleuchtung	einfach bis mittel

Tabelle 7.1 Die Smart-Home-Gewerke im Überblick

Gewerk	Beschreibung	Komplexität
Beschattung	Jalousien, Rollladen, Sonnensegel usw.	einfach
Belüftung	kontrollierte Wohnraumbelüftung, Ventilatoren	einfach bis mittel
schaltbare Steckdosen	alle Arten von Verbrauchern, mit und ohne Stromüberwachung	einfach
Sensorik	Fenster- und Türkontakte	einfach
	Wassermelder, Füllstandssensoren	einfach
	Feuchtigkeitssensoren	einfach
	Außensensoren, Wetterstation	einfach bis mittel
Anwesenheitserfassung	Bewegungsmelder, Präsenzmelder	einfach bis mittel
Sicherheit	Einbruchmeldeanlage (EMA)	mittel bis komplex
	Rauchwarnmelder	einfach
	Zutrittskontrolle	mittel bis komplex
Heizung	Einzelraumregelung	mittel
	Heizungssteuerung	komplex
Energie	Fotovoltaik	mittel
	Smart Metering	mittel
Haushaltsgeräte	intelligente Waschmaschinen, Trock- ner, Herd, Dunstabzug usw.	mittel
Türkommunikation	Wohnungsstation, Türstation,	mittel bis komplex
Telefon	VoIP-Geräte, Anrufbeantworter	mittel
Multimedia	Multiroom-Audio	komplex
	Video	komplex
Visualisierung	Touchpanel, Weboberfläche, mobile Steuerung	mittel bis komplex
IT-Infrastruktur	Rechner, Drucker, Server, Switches usw.	mittel

Tabelle 7.1 Die Smart-Home-Gewerke im Überblick (Forts.)

Das Geheimnis eines intelligenten Zuhauses ist nun, dass diese Gewerke nicht voneinander isoliert arbeiten, sondern untereinander Informationen und Kommandos austauschen können. Nur dadurch erschließen sich alle Vorteile des Smart Homes.

7.1.2 Um smart zu werden, müssen die Gewerke vernetzt sein

Eine motorisierte Jalousie, die Sie per Tasten hoch- und runterfahren können, darf sich noch lange nicht *smart* nennen, auch wenn vielleicht sogar eine Zentraltaste für »alle nach oben« und »alle nach unten« existiert. Ist die Jalousiesteuerung aber gewerkeübergreifend ausgeführt – kann sie also im Sommer bei zu hohen Temperaturen automatisch beschatten, fährt bei Dunkelheit und Anwesenheit von Bewohnern herunter, öffnet die Lamellen bei Fensterbelüftung, schützt vor Regen bei offen stehenden Fenstern und sorgt durch sonnenstandsgeführte Lamellenverstellung für konstante Helligkeit im Raum –, spricht man durchaus von smart.

Besonders interessant an der Sache ist, dass sich eine unsmarte Jalousie kaum von einer smarten unterscheidet. Beide werden durch einen elektrischen Rohrmotor bewegt, beide können mithilfe von Relais hoch- oder runterbewegt werden, beide benötigen eine irgendwie geartete Steuerung. Der einzige Unterschied liegt in der Art, wie diese Steuerung ausgeführt ist:

- Die unsmarte Steuerung ist eine eigenständige und isolierte Ansammlung von Schaltern, fix mit den Jalousiemotoren verbunden, wenig flexibel und nicht in der Lage, auf komplexere Logiken zu reagieren.
- Sie smarte Steuerung besteht aus einem Jalousieaktor, der über ein Bussystem mit allen anderen Smart-Home-Komponenten (Wetterstation, Präsenzmelder usw.) verbunden ist. Die möglichen Bedienelemente (echte Schalter, Tasten auf einer Visualisierung, Automatikfunktionen) haben keine direkte Verbindung zur Steuerung bzw. zum Motor selbst.

Dieser feine, aber essenzielle Unterschied entscheidet darüber, ob ein Gewerk dumm und isoliert vor sich hin werkelt oder Teil eines intelligenten Automatisierungskonzepts wird.

Einen ersten schematischen Überblick darüber, welche Gewerke sich vernetzen lassen, finden Sie in Abbildung 7.1. Dabei wird zwischen einem Automatisierungs-Backbone (grün, unterer Teil der Abbildung) und einem LAN (orange, oberer Teil der Abbildung) unterschieden. Das LAN als Breitbandnetzwerk verbindet alle datenintensiven Endgeräte miteinander, der Automatisierungsbus hingegen ist das Kommunikationsmedium der einzelnen Gewerke. Unser Jalousieaktor (Gewerk Beschattung) aus oben stehendem Beispiel wäre z. B. solch ein Teilnehmer an diesem Bus.

Abbildung 7.1 Die Smart-Home-Gewerke

In einer vernetzten Smart-Home-Umgebung hat ein teilnehmendes Gerät, z. B. ein Sensor, charakteristischerweise nicht nur eine Aufgabe, sondern wird in eine ganze Reihe von Funktionen einbezogen. Nehmen wir als Beispiel einen Fensterkontakt. Er soll in erster Linie anzeigen, ob ein Fenster geöffnet ist oder nicht. Soweit klar, aber wozu dient dieser Sensor zusätzlich? Ein paar Beispiele:

- Offen gelassene Fenster, durch die während Ihrer Abwesenheit die teuer erkaufte Wärmeenergie entweicht, gehören der Vergangenheit an (Stellantriebe werden automatisch geschlossen).
- Genauso ermöglicht er, dass Sie von Ihrem Smart Home gewarnt werden, wenn Regen durch ein offenes Fenster eindringen kann.
- Er liefert einer selbst realisierten Alarmanlage die Information, ob eine Tür oder ein Fenster geöffnet wurde.
- Er schaltet die Raumbeleuchtung aus, wenn das Fenster bei Nacht geöffnet wurde, um nicht lästige Stechmücken einzuladen.
- Er sorgt dafür, dass beim Öffnen des Fensters die Jalousie direkt auf Lüftungsstellung bewegt wird.

7.2 Vergleich mit der herkömmlichen Elektroinstallation

Den Unterschied zwischen einer herkömmlichen Elektroinstallation und einer Smart-Home-Installation möchte ich Ihnen anhand eines Praxisszenarios darstellen. Ihre Anforderung: Sie wünschen sich eine Jalousiensteuerung.

7.2.1 Jalousiensteuerung konventionell

Bei einer herkömmlichen Jalousiensteuerung wird Ihnen der Installateur vermutlich einen Windmesser oder vielleicht sogar eine Wetterstation außerhalb des Gebäudes anbringen. Dieses nicht gerade günstige Gerät wird die Aufgabe haben, einen Windalarm auszulösen, worauf die Jalousien eingezogen werden, oder bei Unterschreiten einer gewissen Außenhelligkeit die Jalousien herunterzufahren. Sämtliche Messwerte, die der Außensensor liefert, sind aber nur innerhalb der Jalousiensteuerung bekannt, sie ist ein geschlossenes System, eine Insel. Möchten Sie beispielsweise die gemessene Helligkeit zusätzlich für das automatische Anschalten der Fassadenbeleuchtung verwenden, haben Sie schlechte Karten. In der konventionellen Elektroinstallation würde Ihnen der Installateur für die Außenbeleuchtung einfach einen zweiten Helligkeitsmesser montieren – unter Umständen direkt neben dem bereits vorhandenen. Raten Sie, was passiert, wenn Sie eine später angeschaffte Markise so automatisieren möchten, dass sie ab einer bestimmten Helligkeit (oder Temperatur) Ihre Terrasse beschattet? Richtig: Entweder ist das gar nicht möglich, oder der zuständige Monteur wird Ihnen neben den beiden anderen einen dritten Sensor an der Außenwand anbringen.

Einmal abgesehen davon, dass Sie für ein und denselben Sensorwert dreimal bezahlen, sind solche Konstruktionen weder optisch ansprechend noch wartungsfreundlich und schon gar nicht flexibel.

7.2.2 Jalousiensteuerung in smart

Wie würde dieses Szenario nun bei der intelligenten Gebäudesteuerung umgesetzt werden? Es wird nur ein einziges Gerät, eine KNX-Wetterstation, an das Gebäude montiert. Die Wetterstation liefert Messwerte (Helligkeit, Temperatur, Wind, Regen usw.) in Form von Telegrammen über ein Bussystem. Jeder Teilnehmer, der an diesem Bus angeschlossen ist, kann sämtliche Messwerte empfangen und beliebig verwenden. In diesem Fall wären es ein Jalousieaktor für die Jalousiensteuerung, ein Schaltaktor für die Außenbeleuchtung und ein Rollladenaktor für die Markise. Und falls Sie mithilfe des Regensensorwerts noch Ihre Gartenbewässerung steuern möchten, ist das ebenso schnell erledigt. Das zusätzliche Modul wird einfach als weiterer Teilnehmer über zwei Adern an den Bus angekoppelt. Schon steht der Bewässerungssteuerung die Gesamtheit aller Informationen und Kommandos zur Verfügung, die alle anderen Teilnehmer zusammen produzieren.

7.2.3 Auch Bedienelemente können smart oder unsmart sein

Dieses kleine Praxisszenario lässt sich beliebig erweitern. Betrachten wir einen einfachen Taster an der Wand. Herkömmlich installiert, fährt er z. B. eine Jalousie nach oben oder herunter. Nicht mehr und nicht weniger. Ein KNX-Taster hingegen schaltet irgendetwas – das kann heute eine Jalousie sein, morgen eine Leuchte oder eine ganze Leuchtengruppe, übermorgen der elektrische Türöffner oder, nachdem der Nachwuchs älter geworden ist, alle Stereoanlagen in allen Kinderzimmern. Auch hier sind Sie maximal flexibel: Die Änderung der Funktion passiert rein in Software, Sie müssen dazu keinen Schraubenzieher in die Hand nehmen und streng genommen nicht einmal wissen, wo sich Ihr Technikraum befindet. Versuchen Sie das mal mit einer herkömmlichen Elektroinstallation.

Zur Verdeutlichung finden Sie in dem folgenden Schaltbild aus Abbildung 7.2 einen herkömmlich installierten Doppeltaster, der genau eine Aufgabe hat, nämlich die beiden fix verdrahteten Leuchten zu schalten.

Abbildung 7.2 Taster in konventioneller Installation

Eine Eins-zu-eins-Umsetzung dieser Schaltung würde in einer KNX-Installation wie in Abbildung 7.3 aussehen:

Abbildung 7.3 Taster in smarter KNX-Installation

Beachten Sie, dass es zwischen den Tastern und den Leuchten keine direkte Verbindung mehr gibt. Genau daher kommt die große Flexibilität, denn was diese Schaltung genau machen soll, entscheiden Sie erst später bei der Parametrierung, die Sie wiederum beliebig oft ändern können. Der Taster würde wahrscheinlich dem Schaltaktor per Telegramm mitteilen, welche Leuchten er anschalten soll, muss es aber nicht. Genauso gut könnte der Taster jede andere Funktion im Gebäude auslösen und der Schaltaktor von beliebigen anderen Busteilnehmern (z. B. einem Bewegungsmelder) aufgefordert werden, eine oder beide Leuchten zu schalten. Darüber hinaus ist die Information, welche Leuchten an und welche aus sind, für alle Busteilnehmer verfügbar. Eine Visualisierung würde diese Schaltzustände beispielsweise jederzeit anzeigen können.

Sie müssen an dieser Stelle noch nicht verstehen, wie genau die beiden KNX-Geräte funktionieren, das erwartet Sie Schritt für Schritt in den weiteren Kapiteln. Wichtig für den Moment ist, dass Sie den wesentlichen Unterschied in der Installation verinnerlichen.

7.3 Basistechnologien für die Gebäudeautomation

Eine Übersicht der wichtigsten Technologien in der Gebäudeautomation soll Ihnen helfen, sich im schwierig zu durchdringenden Dschungel der Systeme und der Technik dahinter zurechtzufinden. Grundsätzlich benutzt jedes System eines der drei Übertragungsmedien (Funk, Powerline = Stromnetz oder eigene Datenleitungen). Funkbasierte Systeme arbeiten zudem in einem von aktuell drei Frequenzbereichen (siehe Abbildung 7.4).

Abbildung 7.4 Smart-Home-Technologien (Funk, Powerline, Datenleitung)

Der Einsatz von proprietären Systemen (in der Darstellung aus Abbildung 7.4 markiert) muss wohlüberlegt sein. Sie binden sich dadurch an einen einzigen Hersteller, was im Fall einer so langfristigen Investition wie der Gebäudetechnik zu Problemen führen kann. Mit der Systemauswahl legen Sie immer auch die Palette der nutzbaren Smart-Home-Geräte fest.

Spezialisierte Bussysteme wie z. B. 1-Wire, SMI und DMX sind in Abbildung 7.4 nicht enthalten, sie spielen jedoch eine wichtige Rolle in der gewerkeübergreifenden Automatisierung und haben in diesem Buch jeweils ein eigenes Kapitel bekommen (siehe Kapitel 10, »1-Wire: nicht nur ›eine‹ Ader« und Kapitel 12, »Weitere Technologien und Standards«).

7.4 Die KNX-Infrastruktur

Da wir uns im Rahmen dieses Buchs für den KNX-Standard als Basis für die intelligente Gebäudeinstallation entschieden haben, steigen wir direkt mit den ersten Grundlagen ein.

7.4.1 Ein KNX-Minimalaufbau

Ein funktionierender KNX-Grundaufbau benötigt immer mindestens zwei essenzielle Geräte, ohne die der KNX-Bus entweder nicht funktionieren würde (Spannungsversorgung) oder sich nicht parametrieren ließe (KNX-Schnittstelle). Sind beide Geräte vorhanden, könnte zwar der Bus arbeiten und der Benutzer ihn parametrieren, aber ohne einen weiteren Teilnehmer (mindestens einen Eingang oder einen Aktor) gäbe es nichts, was irgendeine Funktion beisteuert. Der KNX-Bus wäre also nur ein Stück bestromte grüne Leitung. Im Folgenden ist demnach der kleinste sinnvolle Aufbau dargestellt, der auf eine Aktion auch eine Reaktion liefern kann, also eine Funktionalität besitzt (siehe Abbildung 7.5).

Abbildung 7.5 KNX-Minimalaufbau

Falls Sie sich jetzt die Frage stellen: »Was macht dieser Aufbau?«, haben Sie vollkommen richtig reagiert. Die korrekte Antwort lautet: »Ich habe keine Ahnung!« Noch besser wäre sogar noch: »Das kommt darauf an.«

Naheliegend ist natürlich, dass bei Schließen des Schalters der Verbraucher (die Leuchte) an- und bei Öffnen wieder ausgeschaltet wird. Darüber hinaus existieren aber zahlreiche weitere Möglichkeiten, die mit dem unveränderten Aufbau realisierbar sind. Entscheidend ist einzig und allein, das zu realisieren, was Sie von der Schaltung erwarten. Genau das teilen Sie den beteiligten KNX-Geräten mit, indem Sie sie über die ETS parametrieren. Die ETS (Engineering Tool Software), als wichtiges Werkzeug zur Konfiguration eines KNX-Systems, lernen Sie noch genau in Kapitel 47, »KNX parametrieren mit der ETS-Software«, kennen.

In diesem Minimalaufbau können Sie nur den Binäreingang und den Schaltaktor parametrieren, jedoch erreichen Sie bereits durch deren Einstellungen eine Vielzahl an unterschiedlichsten Funktionalitäten, z. B.:

- Die Leuchte schaltet nicht beim Schließen des Schalters an, sondern beim Öffnen.
- ► Der Schalter hat überhaupt keine Auswirkung auf die Leuchte.
- Nachdem der Schalter wieder geöffnet wird, bleibt die Leuchte noch fünf Minuten brennen, beginnt dann zu blinken und erlischt, wenn nicht wieder der Schalter geschlossen wird.
- ▶ Nur wenn der Schalter länger als zehn Sekunden gedrückt wird, reagiert die Leuchte.
- ► Und es gibt viele weitere mehr oder weniger sinnvolle Anwendungen.

Wichtig an dieser Stelle ist eines: Alle beschriebenen Änderungen an der Funktion erreichen Sie ohne jegliche Änderung an der Verdrahtung!

7.4.2 Vorstellung der KNX-Komponenten

Der im vorherigen Abschnitt einführende Minimalaufbau lässt sich fast beliebig erweitern. Abbildung 7.6 zeigt die verschiedenen KNX-Gerätetypen, aufgeteilt in REG-Module und Unterputzgeräte, jeweils an einer exemplarischen Einbauposition. Dabei habe ich auf Mehrfachabbildung verzichtet, selbstverständlich sind aber in einer typischen Installation mehrere Geräte eines Typs verbaut. Das gilt insbesondere für Schaltaktoren, aber auch für die Bedienelemente und Melder in den einzelnen Räumen.

Abbildung 7.6 Die KNX-Infrastruktur

Erschrecken Sie nicht vor der Anzahl der unterschiedlichen Geräte, in den folgenden Kapiteln lernen Sie jedes einzelne genauer kennen. Außerdem gilt, dass Sie natürlich nicht jeden einzelnen KNX-Gerätetyp in Ihrer Installation benötigen, viele davon sind erst für spezielle Anforderungen oder Erweiterungen notwendig. Die folgende Aufstellung gibt Ihnen einen ersten Überblick:

KNX-Gerätetyp	Art	Aufgabe
Spannungs- versorgung	Systemgerät	Stellt die für den KNX-Bus benötigte Spannung zur Verfügung.
KNX-Schnittstelle	Interface	Stellt die Verbindung zwischen KNX-Bus und Inbetriebnahme-PC bzw. HomeServer bereit oder verbindet den KNX-Bus mit dem IP-Netz- werk.
Wetterstation	Sensorik	Erfasst unterschiedliche Wetterdaten (Wind, Helligkeit, Regen usw.) und stellt diese allen Busteilnehmern zur Verfügung.
Gateway	Interface	Gateways stellen die Verbindung zu ande- ren Bussystemen her (Beispiel: DALI, DMX, EnOcean, 1-Wire).
Energiezähler	Sensorik	Erfassung von Verbrauchsdaten (Strom, Was- ser, Gas) oder erzeugter Energie (Fotovoltaik).
Logikbaustein	Logik	Ermöglicht (als Alternative zu einem Automa- tisierungsserver) die logischen Verknüpfungen von Eingangs- und Ausgangssignalen.
Binäreingang	Sensorik	Abfrage und Auswertung von Sensoren mit zwei Zuständen (Schalter, Taster, Meldekon- takte, Impulszähler usw.) und einfache Ansteuerung von LEDs.
Bereichskoppler, Linienkoppler und Linienverstärker	Systemgerät	Erweitert die Ausdehnung (räumlich und Anzahl der Busteilnehmer) des KNX-Bus.
Schaltaktor	Aktorik	Schalten von Lasten aller Art (Beleuchtung, Steckdosen, Küchengeräte, Kleinverbraucher usw.).
Analogaktor	Aktorik	Dient der Ausgabe von analogen Spannungen unterschiedlichster Art.
Jalousieaktor und Rollladenaktor	Aktorik	Wird eingesetzt zur Ansteuerung von Jalou- sien, Rollladen und anderen Beschattungs- lösungen (wie z. B. Sonnensegeln).
Dimmaktor	Aktorik	Ermöglicht das Dimmen von Lampen (i. d. R. 230 V).

Tabelle 7.2 Die KNX-Gerätetypen

KNX-Gerätetyp	Art	Aufgabe
Heizungsaktor	Aktorik	Ansteuerung von thermoelektrischen Stell- antrieben in Heiz-/Kühlsystemen.
Lüftungsaktor	Aktorik	Ansteuerung von Lüftern oder Ventilatoren.
Automatisierungs- server	Logik, Visualisierung	Komplexer, eigenständiger (embedded) Rech- ner für Logik- und Visualisierungsaufgaben.
Analogeingang	Sensorik	Abfrage und Auswertung von unterschied- lichsten Sensoren (Temperatur, Durchfluss, Meldekontakte, Wettersensoren usw.).
Präsenzmelder	Sensorik	In der Regel an der Decke angebrachte Melder zur Erfassung der Anwesenheit von Personen.
UP-Jalousieaktor	Aktorik	Unterputzversion zur Ansteuerung von Jalou- sien und Rollladen.
UP-Binäreingang	Sensorik, Visualisierung	Unterputzversion, siehe Binäreingang.
Tastsensor	Sensorik, Visualisierung	Multifunktionsbedienelement mit direktem KNX-Zugang und teilweise komfortablen Zusatzfunktionen (Raumtemperaturregler, IR-Interface, LED-Anzeige, grafische Anzeige usw.).
LED-Anzeige	Visualisierung	Mehrfach-LED-Anzeige mit KNX-Anbindung für konfigurierbare Zustandsanzeigen.
Raumtemperatur- regler	Sensorik, Aktorik	Dient zur Erfassung der Soll- und Isttempera- tur im Raum und zu der daraus resultierenden Ansteuerung von Heizungsaktoren.
Luftgütesensor	Sensorik	Erfasst unterschiedliche Luftgütemessdaten (z. B. CO ₂ -Gehalt) und legt sie auf den KNX-Bus.
UP-Schaltaktor	Aktorik	Unterputzversion des Schaltaktors (in REG- Bauweise), siehe oben.
Rauchwarnmelder	Sensorik, Aktorik	Spezielle Version des Rauchwarnmelders mit KNX-Anschluss zur Erkennung von möglichen Bränden und sowohl akustischer als auch bus- gestützter Alarmierung.

Tabelle 7.2 Die KNX-Gerätetypen (Forts.)

7.5 Meistern Sie den Einstieg!

Rufen Sie sich kurz bitte den KNX-Minimalaufbau aus Abbildung 7.5 ins Gedächtnis. Wie würde dieser in der Praxis aussehen? Im Prinzip ganz genauso, eben nur etwas greifbarer (vergleiche Abbildung 7.7). Selbst einen solchen Prototyp aufzubauen, ist in jedem Fall eine gute Idee. Sie können damit bereits lange vor dem Ernstfall, also vor der eigentlichen Installation, beginnen und wertvolle erste Erfahrungen sammeln. Außerdem benötigen Sie die im Prototyp eingesetzten Geräte ebenso für den späteren echten Aufbau.

Abbildung 7.7 Schema und Realität: ein erster KNX-Aufbau

Ich greife an dieser Stelle bereits auf jede Menge Grundlagen vor, die alle noch Thema der weiteren Kapitel sein werden. Erschrecken Sie also nicht, jedes der drei Geräte wird noch ausführlich besprochen.

7.5.1 Bauen Sie den ersten Prototyp

Der Prototyp ist auf einer Standard-35-mm-Hutschiene aufgebaut, wie sie auch im Stromkreisverteiler verwendet wird, und stellt bereits ein funktionierendes KNX-System dar. Die Spannungsversorgung (links) versorgt den gesamten Bus über das schwarz-rote Adernpärchen der (vieradrigen) KNX-Leitung. Die Buskommunikation aller Teilnehmer untereinander verläuft ebenso über diese beiden Adern. Bei der KNX- Busspannung handelt es sich um 30 V DC mit SELV-Eigenschaften (Safety Extra Low Voltage), sie ist also ungefährlich. Anders hingegen sieht es mit der 230-V-Zuleitung für das KNX-Netzteil aus, hier achten Sie bitte ganz besonders auf die Sicherheit.

Vom Netzteil werden zwei weitere Geräte versorgt, ein KNX-IP-Interface, über das zum einen der Bus parametriert wird und zum anderen die Anbindung an die Ethernet-Netzwerkwelt erfolgt, sowie ein Schaltaktor, der für die Ansteuerung von elektrischen Verbrauchern (Beleuchtung, Steckdosen usw.) eingesetzt wird. Das ansonsten im KNX-System unbelegte weiß-gelbe Adernpaar wird in diesem Fall ausnahmsweise für die Zusatzversorgung der IP-Schnittstelle verwendet. Die dazu notwendige Spannung (wiederum 30 V DC) kann von einem beliebigen Netzteil stammen, wird aber oft von dem zweiten Spannungsausgang des KNX-Netzteils abgegriffen. Bitte verwechseln Sie die beiden Ausgänge nicht, sondern beachten Sie, dass nur Ausgang 1 für den KNX-Bus verwendet werden darf. Warum das so ist, erfahren Sie in Kapitel 26, »Den Bus versorgen: Spannungsquellen«, über Spannungsversorgungen.

Wie die drei Geräte über das schwarz-rote Adernpaar verbunden werden, ist fast egal. Weder die Reihenfolge noch die Abzweigungen spielen eine Rolle. Einzig und allein einen geschlossenen Ring müssen Sie vermeiden.

7.5.2 Vom richtigen Umgang mit KNX-Leitungen

Dass es genau diese grüne Leitung sein muss, hat seinen Grund, dazu kommen wir noch in Abschnitt 20.1 über Leitungsmaterial. Als Besitzer der gedruckten Buchausgabe bleibt Ihnen zudem nichts anderes übrig, als mir zu vertrauen, dass die Leitung tatsächlich grün ist. Besitzen Sie hingegen die E-Book-Ausgabe, ist die Sache sowieso klar.

Wie gehen Sie nun bei der Verkabelung der KNX-Geräte über das grüne Buskabel am besten vor? Sie benötigen dazu nur minimalen Werkzeugeinsatz: einen Kabelentmantler zur Entfernung des Leitungsmantels und einen kleinen Seitenschneider (oder eine Abisolierzange) zur Abisolierung der Einzeladern.

Entfernen Sie – wie in Abbildung 7.8 gezeigt – zuerst den Mantel der KNX-Leitung mit dem Kabelentmantler und schneiden Sie die Metallfolie sowie den Beilaufdraht ab. Ein KNX-Busteilnehmer benötigt nur die rote und die schwarze Ader, also schneiden Sie die gelbe und die weiße Reserveader ebenfalls mit dem Seitenschneider ab. Rot und Schwarz isolieren Sie ab und stecken die Enden in die KNX-Busklemme (Typ: Wago Serie 243, siehe Abschnitt 20.4.3, »MICRO-Verbindungsdosenklemmen«).

Durch Aufstecken der Mikroklemme auf das KNX-Gerät stellen Sie nicht nur dessen Busverbindung her. Die Klemme dient auch dazu, bis zu drei weitere KNX-Leitungen anzuschließen, und ist das Mittel der Wahl für alle Arten von KNX-Durchkontaktierung. In Abbildung 7.9 erkennen Sie, dass am mittleren Gerät (IP-Interface) die Verbindung sowohl zum Netzteil (links) als auch zum Schaltaktor (rechts) geklemmt ist.

Abbildung 7.8 Eine KNX-Busverbindung herstellen

Abbildung 7.9 Aufstecken der Busklemmen auf die KNX-Geräte

Im Verteilerschrank ergibt es wenig Sinn, auch das gelb-weiße Adernpärchen durchzuverbinden, daher schneiden Sie es direkt ab. Eine Ausnahme ist, wie im Beispiel gezeigt, die Hilfsspannung des KNX-Netzteils.

Vielleicht fragen Sie sich, welchen Sinn das weiß-gelbe Adernpaar überhaupt hat. In erster Linie sind es zwei Reserveadern, die Sie benutzen können, um beispielsweise eine zweite KNX-Linie aufzubauen, eine Hilfsspannung zu führen oder sogar einen ganzen 1-Wire-Bus damit zu realisieren.

Die Wago-Klemmen-Serie 243 enthält dafür, farblich passend, auch weiße und gelbe Mikroklemmen. Es empfiehlt sich, an Klemmenstellen in Unterputzdosen, z. B. hinter KNX-Tastern oder Präsenzmeldern, alle vier Adern immer mit den passenden Klemmen durchzukontaktieren. Somit vermeiden Sie bei einer späteren Erweiterung das nochmalige Öffnen der Installationsdose.

Achten Sie bei Ihren Arbeiten mit KNX-Leitungen unbedingt darauf, dass Sie den grünen Mantel nicht zu weit entfernen. Die rot-schwarzen Adern ohne Mantel dürfen nicht näher als 4 mm an 230-V-Leitungen heranreichen.

Lösen der Mikroklemmen

Eine KNX-Ader lässt sich nicht so ohne Weiteres wieder aus der Wago-Mikroklemme herausziehen, was ja auch der Sinn dahinter ist. Mit ein bisschen Übung bekommen Sie aber auch das hin. Halten Sie die Klemme mit einer Hand fest und nehmen Sie eine Einzelader zwischen Daumen und Zeigefinger der anderen Hand. Drehen Sie die Ader hin und her und ziehen gleichzeitig dabei. Nach vier oder fünf Drehbewegungen löst sich die Ader.

7.5.3 Datenschienen sind nicht mehr aktuell

Heute nicht mehr aktuell sind die sogenannten *Datenschienen* als Alternative zur KNX-Busleitung im Verteilerschrank. Die Datenschiene wird in die Hutschiene eingeklebt und stellt über Druckkontakte die Verbindung aller in diese Hutschiene eingeklickten KNX-REG-Geräte (Reiheneinbaugeräte) her. Die vier Leiterbahnen der Datenschiene ersetzen sozusagen die vier Adern der grünen KNX-Leitung. Den Übergang auf eine Verkabelung realisiert man durch Verbinder mit aufgesteckten Busklemmen, die am Ende der Datenschienen angebracht sind.

Auch wenn es sich erst einmal interessant anhört – verzichten Sie zugunsten der echten KNX-Busleitung auf den Einsatz von Datenschienen. Sie sind zum einen nicht mehr aktuell, und zum anderen sind KNX-Geräte für die Datenschienenmontage kaum mehr zu bekommen.

Kapitel 8 Intelligent vernetzen mit EIB/KNX

Wir kommen jetzt zu einem zentralen Thema. Erfahren Sie im folgenden Kapitel, wie genau ein KNX-Bussystem aufgebaut ist, wie die Übertragung funktioniert und welche Varianten es gibt.

Steckbrief: KNX				
Merkmal	KNX TP	KNX PL	KNX RF	
Busspannung	30 V DC (21–29 V), KNX ist SELV (Safety Extra Low Voltage)	230-V-Netz/50 Hz	-	
Übertragung	seriell, asynchron	Frequenzband 95 (bis 125 kHz)	Funk, 868,3 MHz, max. Sendeleis- tung 12 mW	
Geschwindigkeit	9.600 Bit/s (max. 50 Telegramme/s)	1.200 Bit/s (max. 6 Telegramme/s)	16.384 Bit/s	
Zugriffsverfahren	CSMA/CA	TDMA	CSMA	
Signaleinkopplung	symmetrisch	Spread Frequency Shift Keying (SFSK)	Frequency Shift Keying (FSK) Modulation	
Telegrammgröße	9–23 Byte (Nutzinhalt 2–16 Byte)	13–27 Bytes (Nutz- inhalt 2–16 Bytes)	mind. 26 Bytes (Nutzinhalt 8 Bytes)	
Teilnehmer (max.)	 256 Geräte pro Linie 16 Linien pro Bereich 16 Bereiche 	 256 Geräte pro Linie 15 Linien pro Bereich 8 Bereiche 	_	

Tabelle 8.1 Steckbrief: KNX

Steckbrief: KNX			
Übertragungsreich- weite (Linie)	max. 700 m	beschränkt durch Signalqualität	-
Leitungslänge (Linie)	max. 1.000 m	beschränkt durch Signalqualität	-
Abstand der Span- nungsversorgung zu Teilnehmern	max. 350 m	-	-
Mindestabstand von zwei Span- nungsversorgun- gen auf einer Linie	mind. 200 m	-	-

Tabelle 8.1 Steckbrief: KNX

KNX, als technischer Nachfolger zum *EIB* (Europäischer Installationsbus) und zu diesem kompatibel, ist ein Feldbus, spezialisiert auf Anwendungen in der Gebäudeautomation. Bereits 1999 wurde die KNX Association gegründet mit dem Ziel, den KNX-Bus als weltweit einzigen offenen Standard für Haus- und Gebäudesystemtechnik zu fördern und weiterzuentwickeln. Die Mitglieder der KNX Association, die sich übergangsweise zunächst als Konnex Association bezeichnete, setzen sich aus insgesamt 376 Produktherstellern aus 37 Ländern zusammen (Stand Juni 2015). Zu der weltweiten Gemeinschaft zählen außerdem mehr als 44.000 Partner aus 125 Ländern, die ca. 7.000 KNX-zertifizierte Produktgruppen anbieten.

KNX ist als internationaler Standard (ISO/IEC 14543-3) sowie als europäischer (CENELEC EN 50090 und CEN EN 13321-1) und sogar als chinesischer Standard anerkannt. Produkte, die das KNX-Logo tragen, sind damit untereinander kombinierbar, unabhängig davon, von welchem Hersteller sie stammen. Die Zukunftssicherheit ist wie bei keinem zweiten System aus der Gebäudeautomation gegeben. Mehrere Millionen erfolgreiche KNX-Installationen weltweit unterstreichen die Attraktivität.

Ein KNX-System kann alle denkbaren Anwendungsszenarien in einem intelligenten Wohn- oder Zweckgebäude umsetzen. Für sämtliche Aufgabenbereiche hält der Markt passende Geräte bereit, angefangen bei der Licht-, Heizungs- und Jalousiensteuerung bis zu Lüftung, Klimatisierung, Energiemanagement, Smart Metering und Sicherheit bzw. Überwachung. Sogar die Bereiche Multimedia und Hausgeräte sind integrierbar.

Dabei kommt ein KNX-System ohne eine zentrale Steuerung aus. Jeder Busteilnehmer (Aktor, Sensor oder Systemgerät) besitzt eine eigene Intelligenz und kann auf direktem Weg mit allen anderen KNX-Geräten kommunizieren. Ein Applikationsprogramm, das jedes KNX-Gerät besitzt, trägt seinen Teil zu der verteilten Intelligenz bei. Der Anwender kann diese Applikationsprogramme zwar nicht ändern, sie aber in einem vorgegebenen Rahmen an seine Vorstellungen anpassen. Man nennt diesen Vorgang parametrieren. Durchgeführt wird er mit einer speziellen PC-Software, der ETS (Engineering Tool Software). Die ETS ist eine herstellerunabhängige Planungs-, Projektierungs- und Inbetriebnahmesoftware für alle KNX-zertifizierten Produkte und sozusagen Bestandteil des KNX-Standards. An ihr führt kein Weg vorbei, es existieren keine Alternativen, was aber den Vorteil hat, dass jeder KNX-kundige Anwender, Elektriker oder Systemintegrator sie bedienen kann. Der Inbetriebnahmerechner und damit die ETS werden nur für Änderungen an einem KNX-System benötigt. Im normalen Tagesgeschäft läuft eine KNX-Automation für sich autark.

8.1 KNX beherrscht verschiedene Übertragungsmedien

Um möglichst universell einsetzbar zu sein, kennt der KNX-Standard mehrere unterschiedliche Übertragungsmedien und unterstützt damit auch mehrere Übertragungsverfahren (siehe Abbildung 8.1).

Abbildung 8.1 Die KNX-Übertragungsverfahren

Im Detail sind das:

- 1. **KNX TP**: Das bekannteste und am meisten verbreitete Übertragungsverfahren benutzt als Medium eine verdrillte Zweidrahtdatenleitung (Twisted Pair). Immer wenn Sie die berühmte grüne KNX-Leitung sehen, handelt es sich um KNX TP.
 - KNX TPO: Übertragung mit 2.400 Bit/s
 - KNX TP1: die aktuelle Version mit 9.600 Bit/s
- 2. **KNX PL**: Die Übertragung erfolgt in der Variante Powerline über ein (bestehendes) 230-V-Netz, wird auch KNX Power Net genannt.
 - KNX PL110: Übertragung mit 1.200 Baud auf 110 kHz
 - KNX PL132: Übertragung mit 2.400 Baud auf 132 kHz

- 3. KNX RF: Funkübertragung bei 868,3 MHz
- 4. KNX IP: Übertragung über Ethernet

Weiterhin existieren die Varianten KNX IR (über Infrarot) und KNXnet (Verschmelzung von KNX und LAN über Ethernet).

Wenn man allgemein von KNX spricht, meint man fast immer die Variante KNX TP1. So werde ich es auch in diesem Buch handhaben. Wenn Sie also KNX ohne Zusatz lesen, beziehe ich mich immer auf das Twisted-Pair-Übertragungsverfahren über die grüne Leitung.

Sind 9.600 Bit/s nicht viel zu langsam?

Wir leben im Zeitalter von Gigabit-Ethernet im Heimnetzwerk, das sind 1.000.000.000 Bit/s. Im Vergleich dazu scheinen die 9.600 Bit/s des KNX TP1 unglaublich wenig zu sein. So gesehen stimmt das auch, aber wenn man bedenkt, dass ein halbwegs gut parametrierter KNX-Bus eine Auslastung von ca. 1 bis 3 % nicht übersteigt, ist die Geschwindigkeit mehr als ausreichend.

Dafür haben Sie den Vorteil, dass KNX sehr flexibel verdrahtet werden kann, dass beinahe jede Topologie möglich ist und dass es sich im Betrieb sehr robust zeigt. Eine Highspeed-Verbindung wie (switched) Ethernet hingegen erlaubt nur eine Punkt-zu-Punkt-Verbindung und stellt sehr hohe Ansprüche an Leitung und Teilnehmer. Als Installationsbus ist Ethernet nicht geeignet.

Sie brauchen bei KNX keine Bedenken zu haben: Wenn Sie eine Lampe einschalten, leuchtet sie auch sofort und ohne spürbare Verzögerung.

Sehen wir uns im Folgenden jeweils die Topologie, das Übertragungsverfahren und das verwendete Protokoll für die unterschiedlichen KNX-Varianten an.

8.2 Die Topologie von KNX TP

Als Topologie (in der Informatik) bezeichnet man die Art und Weise, wie mehrere Geräte in einem Computernetz zueinander angeordnet und miteinander verbunden sind.

Wenn Sie Ihren ersten KNX-Aufbau planen und umsetzen möchten, ist es wichtig, über die Topologie des KNX-Bus Bescheid zu wissen. Sie erfahren daher auf den nächsten Seiten, was es mit Teilnehmern, Linien und Bereichen auf sich hat, welche Regeln Sie befolgen müssen und wie eine für den Privatbau passende Struktur aussehen wird.

8.2.1 Welche KNX-TP-Topologien sind möglich?

Spricht man von Topologie, meint man, je nach Kontext, entweder die physikalische oder die logische Topologie:

- 1. physikalische Topologie: der Aufbau der Netzwerkverkabelung
- 2. logische Topologie: der Datenfluss zwischen den Netzwerkteilnehmern

Sehen wir uns zuerst die möglichen physikalischen Topologien an.

Die physikalische Topologie von KNX TP

In einem KNX-TP-System sind Gerätesteuerung und Stromversorgung auf zwei Netze verteilt: das herkömmliche 230-V-Netz zur Stromversorgung mit Wechselspannung und das Steuerungsnetz (= KNX-Bus) mit 29 V Gleichspannung.

KNX TP ist bezüglich der Topologie sehr genügsam, die Busleitung lässt sich beinahe beliebig verlegen und an jeder Stelle verzweigen. Als physikalische Topologie ergibt sich damit die sogenannte offene Baumstruktur, die einen sehr flexiblen Aufbau erlaubt. In Abbildung 8.2 werden erlaubte und verbotene Strukturen gegenübergestellt:

Abbildung 8.2 Erlaubte und verbotene KNX-TP-Topologien

Vereinfacht gesagt, haben Sie bezüglich der Verkabelung fast freie Hand, Sie müssen sich nur immer die wichtigste Regel vor Augen halten: *keinen Ring!* Beachten Sie bitte, dass bereits eine (teilweise) Vermaschung wie in Abbildung 8.2 rechts oben als Ring gilt und somit nicht erlaubt ist.

Ein Abschlusswiderstand am Ende der Busleitung ist bei KNX TP generell nicht erforderlich.

Die logische Topologie von KNX

Bei vernetzten Strukturen kann die logische Topologie von der physikalischen abweichen. Wie auch immer Sie Ihre KNX-Komponenten physikalisch verdrahten, logisch gesehen ist KNX eine Bustopologie. Jeder Teilnehmer kann auf direktem Weg (über ein gemeinsames Medium) mit jedem anderen Teilnehmer kommunizieren.

8.2.2 Liniensegmente und Linien

Die kleinste Installationseinheit bildet das sogenannte *Liniensegment*. Ein Liniensegment umfasst maximal 64 Teilnehmer und wird von einer Spannungsquelle versorgt.

Ein einzelnes Liniensegment

Die Liniensegmentteilnehmer (die eigentlichen KNX-Geräte) sind über eine gemeinsame Busleitung galvanisch miteinander verbunden. Unter Berücksichtigung der Regeln aus Abschnitt 8.2.1, »Welche KNX-TP-Topologien sind möglich?«, ist es egal, wie die physikalische Topologie der Linie aussieht, logisch gesehen ist die Topologie immer ein Bus.

Beachten Sie bitte in Abbildung 8.3 das obligatorische KNX-Netzteil (SV + DR = Spannungsversorgung mit Drossel) zur Versorgung der maximal 64 Busteilnehmer (TN1 bis TN64).

Verbinden von Liniensegmenten zu einer Linie

Bei mehr als 64 Teilnehmern ist es erlaubt, über sogenannte *Linienverstärker* (LV) bis zu vier einzelne Liniensegmente zu einer *Linie*, mit dann maximal 256 Teilnehmern, zu verbinden (vergleiche Abbildung 8.4). Ein Linienverstärker zählt dabei bereits als ein Teilnehmer.

In der Praxis wird der maximale Linienausbau von 256 Teilnehmern selten ausgenutzt, man geht eher dazu über, direkt eine neue Linie anzulegen, wenn sich abzeichnet, dass die 64 erlaubten Teilnehmer eines Segments nicht ausreichen.

Die Vorteile einer extra Linie gegenüber einer Erweiterung sind offensichtlich:

- Die Busarchitektur wird strukturierter und übersichtlicher.
- Die Menge der Telegramme lässt sich durch die Filterfunktionen der eingesetzten Linienkoppler reduzieren.

Abbildung 8.4 Eine komplette KNX-Linie aus vier Segmenten

Das zur Verbindung von Linien benötigte Modul nennt sich *Linienkoppler* (LK) und ist übrigens ein und dasselbe Gerät wie der Linienverstärker, jedoch mit anderer Parametrierung bzw. anderem Applikationsprogramm (siehe Abbildung 8.5). Das Schöne daran ist, dass Sie jederzeit über die ETS aus einem Linienkoppler einen Linienverstärker machen können und umgekehrt.

Abbildung 8.5 Verbinden von Linien über Linienkoppler
An der ersten Linie O (der *Hauptlinie*) können insgesamt 15 weitere Linien über Linienkoppler angebunden werden. Da die Hauptlinie als vollwertige Linie zu sehen ist, benötigt sie natürlich eine eigene Spannungsversorgung mit Drossel (SV + Dr) und kann für sich selbst maximal 64 Teilnehmer unterbringen. Die eingesetzten Linienkoppler müssen wiederum von der maximalen Teilnehmeranzahl subtrahiert werden.

Zählen Sie in Abbildung 8.5 alle Teilnehmer zusammen, kommen Sie auf die schon recht stattliche Zahl von 15 × 64 + 49 = 1.009 KNX-Teilnehmern, mehr als ausreichend für alle im Ein- oder Mehrfamilienhaus denkbaren Einsatzszenarien. Wenn Sie zusätzlich noch den möglichen Maximalausbau einer Linie auf 256 Teilnehmer über Linienverstärker in Betracht ziehen (siehe Abbildung 8.4), dürften Sie die maximale Teilnehmeranzahl demzufolge noch vervierfachen.

8.2.3 Es wird noch größer: mit Bereichen

Damit aber nicht genug. Es geht noch voluminöser, wobei wir jetzt jedoch eindeutig den Privatbau verlassen und uns ansehen, wie ein wirklich großes KNX-System (z. B. im Industriebereich) aussehen würde. Sehen Sie sich dazu Abbildung 8.6 an.

Abbildung 8.6 Verbinden von Bereichen über Bereichskoppler

Abbildung 8.6 zeigt den Maximalausbau. Dabei werden jeweils 15 Linien plus eine Hauptlinie zu einem Bereich zusammengeschaltet (siehe Abbildung 8.5) und 15 dieser Bereiche über Bereichskoppler (BK) zu einem Gesamtsystem mit theoretisch 58.384 Teilnehmern verbunden. Wiederum ist der Bereichskoppler ein und dasselbe Gerät wie schon Linienkoppler und Linienverstärker, er bekommt seine Aufgabe nur durch eine andere Parametrierung mittels der ETS zugeteilt.

Das *Backbone* (Rückgrat), das die Bereiche verbindet, ist selbst übrigens eine vollwertige Linie mit eigener verdrosselter Spannungsversorgung, an der sich 64 Teilnehmer (inklusive der verbauten Bereichskoppler) anschließen lassen. Über *Gateways* kann zudem die Anbindung an z. B. eine Gebäudeleittechnik erreicht werden.

8.3 Die physikalischen Adressen

Jeder KNX-Teilnehmer, der in einem KNX-System kommunizieren soll, erhält eine eindeutige Nummer, die sogenannte *physikalische Adresse* (PA). Im Gegensatz zu z. B. MAC-Adressen bei Ethernet, die weltweit einmalig sind, ist die KNX-PA nur innerhalb genau eines KNX-Systems eindeutig.

8.3.1 Die Notation der physikalischen Adresse

Aufgebaut sind die physikalischen Adressen nach folgendem Schema aus Abbildung 8.7:

Abbildung 8.7 Aufbau von physikalischen Adressen

Dabei gilt:

- Die erste Zahl beinhaltet die Nummer des Bereichs, in dem der Teilnehmer installiert ist,
- ▶ die zweite Zahl enthält die Liniennummer und
- ► die dritte Zahl die fortlaufende Teilnehmernummer innerhalb seiner Linie.

Ein Gerät mit der physikalischen Adresse 3.2.5 ist beispielsweise der 5. Teilnehmer in der 2. Linie des 3. Bereichs.

Die folgende Abbildung 8.8 kennen Sie bereits aus Abschnitt 8.2.2, »Liniensegmente und Linien«. Nehmen Sie an, der dargestellte Bereich wäre über einen Bereichskoppler als dritter Bereich eingehängt, dann würden Sie den Teilnehmer 3.2.5 an der rot markierten Position ● finden (siehe Abbildung 8.8):

Abbildung 8.8 Physikalische Adressen im Bereich

8.3.2 Spezielle physikalische Adressen für KNX-Koppler

Koppler	Bereich	Linie	Teilnehmer	Beispiel
Bereichskoppler (in Bereichslinie, Hauptlinie)	> 0	= 0	= 0	3.0.0
Linienkoppler (in Hauptlinie, Sekundärlinie)	> 0	> 0	= 0	3.1.0
Linienverstärker (als Verlängerung einer Linie)	>0	>0	>0	3.1.25

Für KNX-Koppler (Linienkoppler, Bereichskoppler) existieren spezielle physikalische Adressen, die beachtet werden müssen. Tabelle 8.2 zeigt dies.

Tabelle 8.2 Spezielle physikalische Adressen für Koppler

8.4 Die Gruppenadressen

Neben der für jeden Teilnehmer eindeutigen physikalischen Adresse existieren für den KNX-Telegrammverkehr die logischen Adressen oder sogenannte *Gruppenadressen* (GA). Sie orientieren sich nicht an der Bustopologie, sondern an den betriebstechnischen Funktionen (Anwendungen) des KNX-Systems.

8.4.1 Gruppenadressen sind die virtuellen Verdrahtungen

Gruppenadressen stellen die Verbindung der KNX-Geräte untereinander dar, Sie können sie sich wie eine virtuelle Drahtverbindung vorstellen. Jedes Gerät, das eine bestimmte Gruppenadresse enthält, ist mit diesem »Draht« verbunden. Am schnellsten wird der Sinn der KNX-Gruppenadressen klar, wenn man deren Äquivalent in der konventionellen Elektroinstallation sucht: In einer herkömmlichen Gebäudeverkabelung müssten Sie, wenn Sie eine Leuchte über einen Schalter bedienen möchten, eine *echte* Leitung zwischen den beiden vorsehen. Bei einer KNX-Installation existiert eine solche direkte Verbindung nicht, Sie benötigen lediglich eine *virtuelle* Verbindung zwischen Schalter und Leuchte. Eine virtuelle Verbindung erstellen Sie ganz einfach mit der ETS, indem Sie sowohl dem Schalter als auch der Leuchte eine für diese Funktion (Schalten der Leuchte) erstellte Gruppenadresse zuweisen.

Sie müssen für diese »Verdrahtung« keinen Schraubenzieher in die Hand nehmen und nicht einmal die Tür Ihres Verteilerschranks öffnen. Ein paar Mausklicks reichen, und schon kommunizieren beide Geräte miteinander. Wünschen Sie irgendwann, dass der Schalter aus dem Beispiel noch eine zweite, zusätzliche Leuchte anschalten kann oder ein zweiter Schalter ebenfalls die Leuchten bedienen können soll, weisen Sie ein und dieselbe Gruppenadresse allen weiteren Geräte zu, und im Handumdrehen haben Sie eine Schaltung erzeugt, die genau die gewünschte Funktion abbildet.

8.4.2 Die Notation von Gruppenadressen

Im Gegensatz zu physikalischen Adressen notiert man die Gruppenadressen mit einem Schrägstrich (/) statt mit einem Punkt (.), wodurch sich die beiden Adressarten jederzeit gut unterscheiden lassen.

Eine KNX-Gruppenadresse kann entweder zweistufig (ohne Mittelgruppe) oder dreistufig (mit Mittelgruppe) codiert werden, wobei die in Abbildung 8.9 aufgeführte Schreibweise gilt.

Hauptgruppe	/	Untergruppe		
oder:				
Hauptgruppe	/	Mittelgruppe	/	Untergruppe

Abbildung 8.9 Schreibweisen für Gruppenadressen

Zwischen beiden Notationsarten kann beliebig gewechselt werden, eine Umrechnung ist über eine einfache Formel möglich. Die zweistufige Darstellung ergibt sich aus der dreistufigen Variante wie folgt:

<Hauptgruppe>/<Untergruppe> = <Hauptgruppe>/<Mittelgruppe × 256 + Untergruppe>

Der Schrägstrich (/) repräsentiert das Trennzeichen der Gruppenadressen und hat in oben stehender Umrechnung keine mathematische Bedeutung.

Unabhängig davon, für welche Notationsart Sie sich entscheiden – die Information, die auf den Bus gesendet wird, ist immer die gleiche. Auch alte Geräte, die nur zweistufige Gruppenadressen unterstützen, können in ein dreistufiges Gruppenadresssystem integriert werden. Dazu müssen die Gruppenadressen einfach umgerechnet werden und können per ETS im Gerät eingetragen werden.

Besondere Gruppenadressen

Die Untergruppe O kann übrigens nicht belegt werden, sie ist eine systeminterne Adresse. So ist die Gruppenadresse O/O/O z. B. für sogenannte Broadcast-Meldungen (Telegramme an alle vorhandenen Teilnehmer) reserviert.

Beispiel zur Zuordnung von Gruppenadressen

Die folgende Darstellung aus Abbildung 8.10 verbildlicht die Zuordnung der Gruppenadressen zu den an einer Funktion beteiligten KNX-Geräten für das gerade skizzierte Beispiel mit zwei Schaltern und zwei Leuchten, erweitert um eine dritte Leuchte und einen Präsenzmelder. Der Präsenzmelder (PM 1) soll Leuchte 3 schalten und außerdem die Leuchten 1 und 2 (GA: 5/2/2), wohingegen die beiden Taster nur die Leuchten 1 und 2 bedienen sollen (GA: 5/2/1).

Abbildung 8.10 Schreibweisen für Gruppenadressen im Beispiel

Beachten Sie bitte, dass die Leuchten 1 und 2 jeweils zwei Gruppenadressen besitzen. Die erste repräsentiert dabei die virtuelle Drahtverbindung mit den beiden Schaltern, die zweite GA stammt von der Verbindung zum Präsenzmelder.

In Abbildung 8.10 habe ich an dieser Stelle noch ein Detail ausgelassen. Auf die Notwendigkeit von Statuswerten bzw. Rückmeldeobjekten gehe ich in Abschnitt 52.1.5, »Was hat es mit den Statusobjekten auf sich?«, separat ein.

Kapitel 9 Atmosphärisches Licht mit DALI

Mit DALI, einem auf Beleuchtungstechnik spezialisierten Bus, realisieren Sie eindrucksvolle Lichtsteuerungen bei kostengünstiger Installation. Eine Anbindung an den KNX-Bus bringt zusätzliche Vorteile.

Steckbrief: DALI		
Merkmal	DALI	
Busspannung	nominal 16 V, kein SELV	
Übertragung	zweipolig, galvanisch getrennt und polaritätsfrei (verpolungssicher)	
Geschwindigkeit	1.200 Bit/s, asynchron und bidirektional	
Zugriffsverfahren	Master/Slave-Prinzip	
Teilnehmer (max.)	 64 Teilnehmer 16 Gruppen	
Szenenspeicher	16 Szenenspeicher	
Leitungslänge	max. 300 m	

Tabelle 9.1 Steckbrief: DALI

9.1 Was ist DALI?

Das *Digital Addressable Lighting Interface (DALI)* ist ein weltweit standardisiertes Protokoll zur Ansteuerung von Betriebsgeräten der Beleuchtungstechnik und wurde von der *International Electrotechnical* Commission (IEC) spezifiziert. Das DALI-Protokoll ist in der dreiteiligen Normreihe IEC 62386-1xx, 62386-2xx und 62386-1xx festgeschrieben.

Die Zahl der DALI-Mitgliedsfirmen liegt bei etwas über 100 weltweit und besteht aus bekannten Name wie ABB, Busch-Jaeger, DIAL, Eldoled, GE, Insta, IPAS, Meanwell, Merten, Osram, Panasonic, Philips, Samsung, Toshiba, Tridonic, Wage, Warema und Zumtobel.

Das DALI-Logo (siehe Steckbrief) darf nur von Geräten getragen werden, die DALI-Standard-konform (IEC 62386) arbeiten, was auch mit Bestehen der relevanten Tests auf dem DALI-Testsystem belegt nachgewiesen wurde. Für uns als Technologieanwender macht sich diese Tatsache darin bemerkbar, dass grundsätzlich DALI-Geräte mit allen DALI-Steuerungen kompatibel sind. Der volle Funktionsumfang hingegen (z. B. die automatische Geräteerkennung) ist möglicherweise nur dann uneingeschränkt gegeben, wenn die Geräte des Systems vom selben Hersteller stammen.

DALI ist eine Weiterentwicklung des *1–10-V-Standards* und von *Digital Serial Interface* (DSI), das selbst wiederum eine digitale Variante des 1–10-V-Standards ist. Das ebenfalls digitale DALI-Protokoll arbeitet in beide Richtungen (bidirektional), kann also Leuchtmittel nicht nur ansteuern, sondern auch Statusmeldungen von z. B. EVGs oder Dimmern an eine Steuerung zurückgegeben.

9.2 Warum gibt es DALI?

An die moderne Beleuchtungstechnik wird heutzutage nicht mehr nur die einfache Anforderung gestellt, Licht ein- und auszuschalten. Mittlerweile spielen die einst als nebensächlich bewerteten Funktionen eine immer wichtigere Rolle:

- ► Rückmeldung von Fehlerzuständen des Beleuchtungssystems (Lampenfehler)
- ► Anbindung an einen (übergeordneten) Gebäudeautomationsbus
- ▶ präsenz- und umgebungslichtabhängige Lichtregelung sowie Konstantlichtregelung
- ▶ geringer Installationsaufwand, dafür aber Flexibilität und Robustheit im Betrieb
- ▶ geringe Kosten für notwendige Komponenten

9.2.1 Der Vergleich zur 1–10-V-Technik

Die analoge Vorgängertechnologie, die heute immer noch stark verbreitete 1–10-V-Technik, hatte keine Lösung für die gestiegenen Anforderungen parat. DALI als Kommunikationsstandard für Lichtsysteme besitzt im Vergleich zur 1–10-V-Technik eine Reihe von Vorteilen, die Sie Tabelle 9.2 entnehmen können:

Anforderung	DALI	1–10-V-Technik
Einfachheit der Ansteue- rung/Verdrahtung	 integrierter Netzspan- nungsschalter (kein externes Relais erforder- lich) polaritätsfreie 2-Draht- Steuerleitung keine Beachtung der Netzspannungsphase 	 Kein Netzspannungs- schalter 2-Draht-Steuerleitung mit Polarität

Tabelle 9.2 Gegenüberstellung von DALI und der 1–10-V-Technik

Anforderung	DALI	1–10-V-Technik
Dimmkurve	 logarithmische Dimm- kurve (angepasst an Augenempfindlichkeit) individuelle Dimm- optionen 	 lichtstromlineare Dimmkurve keine individuellen Dimmoptionen
Ansteuerung von einzelnen Teilnehmern	 adressierbar sind: max. 64 Teilnehmer einzeln Gruppen (max. 16), aber ohne Relevanz auf die Verdrahtung alle zusammen (Broadcast) 	nicht unterstützt
Speicherung von Szenen	max. 16 Szenenspeicher mit synchronen Szenen- übergängen	nicht unterstützt
Rückmeldungen	teilnehmerindividuelle Rückmeldungen (z. B. bei Lampenfehler)	nicht unterstützt

Tabelle 9.2 Gegenüberstellung von DALI und der 1–10-V-Technik (Forts.)

9.2.2 Ist ein weiterer Bus sinnvoll?

Was könnte die Motivation sein, neben dem auf Gebäudeautomatisierung spezialisierten KNX-Bus einen weiteren Bus einzusetzen? Die Frage ist schnell zu beantworten:

- ► Für Niedervolt-Dimmaktoren ist DALI kompromisslos günstig.
- Bis auf ganz wenige Ausnahmen suchen Sie Vorschaltgeräte für RGB(W)-LEDs als KNX-Version vergeblich. Für DALI (und auch DMX) gibt es hingegen reichlich Alternativen.

DALI ist spezialisiert auf Lichtmanagement und keinesfalls als Konkurrenzprodukt zu KNX zu sehen. Vielmehr ist DALI eine sinnvolle Ergänzung, sobald Sie in Ihrem Smart Home nicht nur Hochvoltleuchtmittel ein- und ausschalten wollen, sondern gern mit dimmbaren Niedervoltprodukten arbeiten oder zusätzlich auf LED-Beleuchtung setzen möchten. Für das Schalten und Dimmen von 230-V-Leuchtmitteln bleibt KNX jedoch derzeit das Mittel der Wahl. DALI bietet eine vollständige Systemlösung, die die gesamte Strecke umfasst – vom Lichtmanagementsystem über die Ansteuerung bis hin zu Leuchte, EVG und letztendlich der Lampe selbst.

9.3 Die DALI-Technik

Wie Sie aus Abbildung 9.1 erkennen können, besteht ein DALI-System aus *Steuergeräten*, *Betriebsgeräten*, einer Busverdrahtung (das physikalische Medium) und aus einer oder mehreren Spannungsversorgungen (nominal 16 V, maximal 250 mA). Abschlusswiderstände werden nicht benötigt.

Spannungsversorgungen können sein:

- eine separate, zentrale Schnittstellenversorgung
- ein Steuergerät mit eingebauter Schnittstellenversorgung
- Betriebsgeräte, die zusätzlich eine interne Schnittstellenversorgung besitzen

Abbildung 9.1 Die DALI-Topologie

Das Steuergerät steuert den Zugriff auf das physikalische Medium (den DALI-Bus), kommuniziert mit den Betriebsgeräten (den Teilnehmern), fragt deren Status ab und wird zur Inbetriebnahme und Parametrierung der Teilnehmer benötigt. Manche Steuergeräte bieten außerdem Anschlussmöglichkeiten für zusätzliche externe Sensorik. Im späteren Verlauf des Buchs werden Sie die sogenannten KNX-DALI-Gateways noch genauer kennenlernen, die ein sehr gutes Beispiel für ein DALI-Steuergerät sind.

Die Busarchitektur zeichnet sich durch folgende Merkmale aus:

- DALI ist grundsätzlich Multi-Master-fähig (d. h., es können auch mehrere Steuergeräte verwendet werden).
- Als Zugriffsverfahren wird bei DALI ein Master/Slave-Prinzip eingesetzt.
- ▶ Die Übertragungsgeschwindigkeit beträgt 1.200 Bit/s, asynchron und bi-direktional.
- ▶ Es können pro DALI-Bus maximal 64 Teilnehmer angesprochen werden.
- Abbildung 9.1 ist aus gutem Grund etwas »chaotisch« gezeichnet, sie soll verdeutlichen: Die Topologie ist beliebig, möglich sind z. B. Sternverkabelung sowie Linienoder Baumstruktur, eine Ringverkabelung ist jedoch ausgeschlossen!

- > DALI ist intern galvanisch getrennt und arbeitet mit potenzialfreien Steuereingängen.
- ▶ Die maximale Leitungslänge ist 300 m bei 1,5-mm²-Adern.

DALI ist als System mit verteilter Intelligenz konzipiert, für jeden einzelnen Teilnehmer (Betriebsgerät) gilt dabei:

- Seine gespeicherte Teilnehmeradresse ist eine Kurzadresse mit 6 Bit (woraus die Beschränkung auf 64 Teilnehmer resultiert: 2⁶ = 64).
- ► Er kann einzeln adressiert werden oder über Gruppen, wobei maximal 16 Gruppen unterstützt werden.
- Es können bis zu 16 Lichtszenen (vordefinierte Einstellwerte) pro Betriebsgerät (Teilnehmer) gespeichert und wieder abgerufen werden.
- ► Die Speicherung von Dimmparametern (z. B. Kennlinie) und Notstromlichtwert sowie einem Einschaltlichtwert bei Spannungsrückkehr ist möglich.
- ▶ Die typische Stromaufnahme ist 2 mA (nicht sendend).
- ► Jeder Teilnehmer kann durch DALI-Befehle ein- und ausgeschaltet werden.
- Alle Teilnehmer reagieren auf Broadcast-Kommandos und erzeugen Statusmitteilungen.

9.4 Die DALI-Installation

Die DALI-Installation ist denkbar einfach und erfolgt mit handelsüblichem Installationsmaterial für 230-V-Netzspannung.

9.4.1 Eine separate Busleitung ist nicht erforderlich

Idealerweise verwenden Sie fünfadrige Leitungen (z. B. NYM 5 × 1,5 mm²) und realisieren den DALI-Bus mit den beiden nicht benötigten Adern, erfreulicherweise ohne die Polarität beachten zu müssen. Die Verwendung von abgeschirmten Steuerleitungen ist nicht erforderlich. Es gilt generell, dass DALI und 230 V nebeneinander verlegt werden dürfen, wenn zweimal die Basisisolierung vorhanden ist. Ein weiterer Vorteil ist: EVG und Steuergerät können an unterschiedlichen Netzspannungsphasen betrieben werden.

Beachten Sie bitte bei der Auslegung die Mindestquerschnitte der eingesetzten Leitungen:

Leitungslänge	Minimaler Leitungsquerschnitt
bis 100 m	0,5 mm ²
100–150 m	0,75 mm ²
über 150 m	1,5 mm ²

 Tabelle 9.3 DALI-Leitungslänge und Mindestquerschnitt

9.4.2 Das DALI-Anschlussschema

Das folgende beispielhafte Anschlussschema (siehe Abbildung 9.2) verdeutlicht die flexible Art und Weise der DALI-Verdrahtung. Das Steuergerät wird mit einer beliebigen Phase (in unserem Fall L1) versorgt und stellt die beiden DALI-Steuerleitungen (DA) zur Verfügung, die in beliebiger Polarität an alle Betriebsgeräte geführt werden (EVGs). Jedes EVG wird wiederum mit einer beliebigen Phase, die nicht diejenige des Steuergeräts sein muss, verbunden.

Abbildung 9.2 DALI-Anschlussschema

In der Praxis würde dieses Schema z. B. so umgesetzt werden, dass das Steuergerät zentral im Verteiler eingebaut ist und alle EVGs bzw. jeweils das erste EVG einer Kette mittels NYM 5 × 1,5 mm² ebenfalls bis in den Verteiler geführt werden. Alle fünf Adern werden auf Reihenklemmen verteilt, und jeder EVG-Strang wird mit N, PE und entweder L1, L2 oder L3 angefahren. Die beiden DA-Steuerleitungen werden bereits an den Reihenklemmen gebrückt.

Wichtig: DALI ist kein SELV

Bewusst wurde bei DALI auf die Verwendung von *Schutzkleinspannung* (SELV, englisch: Safety Extra Low Voltage) verzichtet, es sind keine speziellen Leitungen oder Kabeldurchführungen notwendig. Die Installation bleibt dadurch sehr kostengünstig. Ein einzelnes NYM 5 × 1,5 mm² beispielsweise reicht für die Kombination von stromführender 230-V-Leitung und den beiden DALI-Steuerleitungen in einem gemeinsamen Schutzmantel aus.

Kapitel 17 Starten Sie die Planung

Die richtige Planung ist der Erfolgsfaktor schlechthin für die Mission Smart Home – sowohl bei einem Neubau als auch bei Umbau und Ausbau. Starten Sie mit der Planungsphase so früh wie möglich.

Sie besitzen, nachdem Sie tapfer den Grundlagenteil durchgearbeitet haben, einen soliden Überblick über die verschiedenen Smart-Home-Technologien und Standards, kennen wichtige Linux-Handgriffe für die Wartung eines Automatisierungsrechners und haben sich mit Teilgebieten der Elektrik, Digitaltechnik und Regelungstechnik vertraut gemacht. Bisher war alles noch Theorie, jetzt ist es an der Zeit, das Gelernte in einem eigenen Projekt umzusetzen. Willkommen im Planungsteil Ihres Buchs.

17.1 Der Masterplan

Der in diesem Abschnitt vorgestellte 16-Punkte-Plan (Tabelle 17.1) zeigt Ihnen die wichtigen Arbeitsschritte auf dem Weg zum Smart Home. Je nach Bauphase, in der Sie sich gerade befinden (Neubau, Umbau, Erweiterung, oder nur ein erstes Experiment mit KNX), können Sie auf den einen oder anderen Schritt auch verzichten. Abhängig davon, wie viel Sie sich selbst zutrauen, lohnt es sich, einen erfahrenen Elektromeister oder Systemintegrator, insbesondere für die Schritte 4 bis 7, mit ins Boot zu holen. Dazu finden Sie im nächsten Abschnitt nützliche Hinweise.

Nach Schritt 10 ist Ihr Smart Home bereits vollständig bewohnbar. Ab Schritt 11 warten die Aufgaben auf Sie, die besonders viel Spaß machen, und Sie bekommen von Ihrem System das zurück, was Sie in Planung und intelligente Gebäudeverkabelung investiert haben: Flexibilität, Komfort, Erleichterungen, Energieeinsparung, Sicherheit und selbstverständlich auch ein beachtliches Maß an NBF (Nachbarschafts-Beeindruck-Faktor).

Schritt	Tätigkeit
1	Nehmen Sie sich vor, aus Ihrem Heim ein Smart Home zu machen. Das haben Sie bereits mit dem Kauf dieses Buchs erledigt. Sehr gut!
2	Machen Sie sich mit den Möglichkeiten eines Smart Homes und den techni- schen Grundlagen vertraut. Idealerweise arbeiten Sie alle Grundlagenkapitel durch sowie den Hardwareteil des Buchs.

Tabelle 17.1 Der 16-Punkte-Masterplan

Schritt	Tätigkeit
3	Bauen Sie einen kleinen KNX-Prototyp, um das Gelernte in der Praxis zu »fühlen«. Es ist hilfreich, bereits in dieser Projektphase erste Erfahrungen zu sammeln (siehe Abschnitt 7.5).
4	Bestimmen Sie Ihre Raumausstattung (Abschnitt 17.3) und erstellen Sie darauf aufbauend das Raumbuch (Abschnitt 22.1).
5	Definieren Sie ein passendes Schalterbedienkonzept (Abschnitt 22.5).
6	Erstellen Sie einen Leitungsplan, eine Verteilerplanung und einen Stromlauf- plan (Kapitel 22).
7	Beteiligen Sie sich so gut es geht an der praktischen Umsetzung der Elektro- installation. Setzen Sie Ihren Plan so weit wie möglich bzw. sinnvoll mit einem kabelbasierten System um (KNX TP). Für spätere Erweiterungen sind Funk- lösungen eine gute Alternative (KNX RF, EnOcean usw.).
8	Erstellen Sie den Logikkatalog (Abschnitt 22.6).
9	Schaffen Sie ein zuverlässiges IT-Netzwerk, vorzugsweise ein verkabeltes Ethernet, ergänzt durch WLAN (Abschnitte 12.4, 12.5).
10	Die KNX-Basisprogrammierung: Setzen Sie die Grundfunktionalität um: Beleuchtung, Steckdosen, Jalousien, Heizung (Teil VI, »Realisierungen«).
11	Reizen Sie Ihre KNX-Komponenten aus und lernen Sie, die Features der Appli- kationen zu nutzen. Erstellen Sie Szenen (Abschnitt 21.5).
12	Ergänzen Sie Ihr System durch eine optionale Logik-Engine und eine Visualisie- rungsoberfläche (Kapitel 34).
13	Integrieren Sie weitere Teilsysteme: Multimedia, Telefon, Haushaltsgeräte, Sicherheit, Smart Metering usw. (Teil 6, »Realisierungen«).
14	Falls gewünscht, machen Sie Ihr Eigenheim fernbedienbar (Abschnitt 24.4).
15	Ihr Smart Home ist flexibel – nutzen Sie das. Passen Sie Ihre Automatisierung an veränderte Lebensumstände an (Haustier, Kinder, Lebensalter, liebe Nach- barn, böse Nachbarn usw.).
16	Und nicht zu vergessen: Seien Sie kreativ, nutzen Sie Ihre Automatisierungs- plattform, es gibt so gut wie nichts, was nicht möglich wäre.

Tabelle 17.1 Der 16-Punkte-Masterplan (Forts.)

Begleitend zu allen Arbeitsschritten, aber insbesondere ab Schritt 10 der KNX-Umsetzung, möchte ich Ihnen gern ans Herz legen, eine zentrale Liste mit allen noch offenen Problemen bzw. gewünschten Verbesserungen zu führen. Notieren Sie sich darin stets alle Beobachtungen sowie weitere Einfälle, aus denen sich noch Überarbeitungen ergeben. Beispiele:

- Licht im Flur geht zu früh an (Helligkeitsschwelle heruntersetzen).
- ► Falls jemand auf der Terrasse sitzt, soll die Jalousie der Terrassentür nicht automatisch heruntergefahren werden.

Immer wenn Sie etwas Zeit haben, setzen Sie sich an die ETS (Engineering Tool Software), arbeiten die Verbesserungen päckchenweise ein, überprüfen das Resultat und markieren sie als gelöst. Oft ist es auch hilfreich, den anderen Familienmitgliedern diese Liste ebenfalls zu öffnen. Im Alltag kristallisieren sich immer wieder neue Wünsche an das intelligente Zuhause heraus, die Sie mit einem gemeinsamen Katalog gut in den Griff bekommen. Vielleicht erinnern Sie sich in Abschnitt 2.3, »Wie bringe ich es meiner Frau bei?«, an den Woman Acceptance Factor, dem dieses Vorgehen ebenfalls zuträglich ist.

17.2 Die wichtigsten Stakeholder

Sehen wir uns im Folgenden einen weiteren wichtigen Planungsaspekt an. Für Ihr Vorhaben werden Sie, je nach Art und Umfang, weitere Personen (die Stakeholder) einbeziehen. Als *Stakeholder* werden alle Personen oder Gruppen von Personen bezeichnet, die ein berechtigtes Interesse an einem Projekt und dessen Verlauf haben. Das Projekt ist in diesem Fall Ihr Neubau bzw. Umbau oder die Aufrüstung Ihres Eigenheims zu einem Smart Home. Die Stakeholder bei diesem Projekt sind der Architekt oder Bauträger, der Statiker, die Handwerker und natürlich Sie selbst.

Sind Sie in der erfreulichen Lage, ein Smart Home von Anfang an für eine Wohnung oder ein Einfamilienhaus zu planen, informieren Sie bereits zu einem möglichst frühen Zeitpunkt alle beteiligten Planer und Handwerker über Ihr Vorhaben. Die wichtigste Rolle spielt natürlich der Elektriker, aber auch Architekt (und Statiker), Heizungsbauer, Jalousiebauer, Fensterbauer und gegebenenfalls Lichtplaner oder Innenausstatter sollten Ihre Anforderungen kennen. Bei einem Neubauprojekt sind sämtliche Abschnitte, die in diesem Kapitel folgen, relevant. Handelt es sich bei Ihrem Vorhaben um einen Ausbau oder Umbau, sind je nach Umfang auch weniger Gewerke beteiligt.

Bauträger oder Architekt?

Die Entscheidung, ob Sie lieber mit einem Bauträger oder einem Architekten bauen, sollten Sie sorgfältig abwägen. Es liegt außerhalb meiner Kompetenz, den für Sie persönlich besten Weg vorzuschlagen, aber ich würde Ihnen gern zwei Entscheidungshilfen mitgeben:

► In einer Studie des Berliner Instituts Spreefeld (*www.stadt-haus.de/fileadmin/Dokumente/Sonstiges/iww.pdf*) sind zehn Argumente, die für den Bau mit Architekten sprechen, prägnant zusammengefasst. Ich möchte ein elftes Argument hinzufügen: Die für ein Smart Home wichtigen Planungsdetails sind mit einem Architekten reibungsloser zu realisieren als mit einem Bauträger.

17.2.1 Beziehen Sie den Architekten von Anfang an mit ein

Auch wenn der Architekt die Details einer Heimautomatisierung nicht kennen muss, hat die Tatsache, dass Sie sich eine solche wünschen, Auswirkungen auf seine Planung. Gegenüber einer konventionellen und nicht smarten Installation benötigen Sie deutlich mehr Installationsleitungen (wenn Sie nicht größtenteils auf funkbasierte Lösungen setzen) und ausreichend Raum für einen großzügig dimensionierten Verteilerschrank. Schenken Sie mindestens den folgenden Planungsdetails Ihre Aufmerksamkeit:

- Wo kann die Unmenge an Leerrohren geführt werden? 150 Leerrohre sind eher der Regelfall als die Ausnahme. Wie und wo überwinden Sie Stockwerkgrenzen? Können ein oder mehrere Kabelschächte eingeplant werden?
- Der Statiker sollte über Leerrohrhäufungen informiert sein. Zusätzlicher Armierungsstahl könnte erforderlich sein (Abbildung 17.1).
- Gleiches gilt für die Verrohrung einer KWL (einer kontrollierten Wohnraumlüftung).
- Ein eigener Technikraum ist von großem Vorteil (großer Verteilerschrank, 19-Zoll-Rack für Netzwerk und Multimedia).
- Speziell bei Holzständerbauweise erweist sich eine Installationsebene in Wänden und Decken als vorteilhaft. Eine Dampfbremse oder Dampfsperre bleibt dabei unangetastet.
- ► Eine abgehängte Decke erleichtert die Planung und Installation von Leuchtmitteln, Präsenzmeldern, Deckenlautsprechern, Rauchwarnmeldern und Ähnlichem.
- Sie benötigen eine Möglichkeit, Installationsleitungen nach draußen zu führen (Gartenbeleuchtung, Fassadenbeleuchtung, Melder, Kamera, Geräteschuppen, Terrasse, Garage, Wetterstation, SAT).
- Bei Ausschreibungen an z. B. Jalousiebauer und Heizungsbauer muss berücksichtigt werden, dass Sie ein Bussystem wünschen und keine für jedes Gewerk individuelle Steuerung. Statt Raumthermostaten verwenden Sie z. B. KNX-Tastsensoren, Gleiches gilt für die Bedienelemente der Jalousien oder Rollladen. Mit einem KNX-Tastsensor können Sie mehrere Gewerke durch ein einziges Gerät bedienen (Beleuchtung, Jalousien, Heizung, Belüftung usw.).
- ► Übernimmt Ihr Architekt auch die Beleuchtungsplanung, sprechen Sie die zahlreichen Möglichkeiten, die sich durch den Einsatz von DALI oder DMX ergeben, mit ihm durch.

Abbildung 17.1 Leerrohre vor dem Gießen der Betondecke

17.2.2 Wählen Sie einen kompetenten Elektriker

Mindestens für die Anmeldung, Auslegung, Installation und Abnahme Ihrer elektrotechnischen Anlage benötigen Sie einen Elektromeister. Mit ihm zusammen sprechen Sie ab, welche Teilarbeiten Sie (unter seiner Regie) selbst durchführen können und dürfen. Je nach Ihren persönlichen Fähigkeiten und Ihrer Bereitschaft dazu können Sie durch Eigenleistung eine Menge bares Geld sparen (das Sie gut für Ihre Smart-Home-Komponenten gebrauchen können). Tätigkeiten, die sich auch für den Nichtfachmann eignen, finden Sie zusammengefasst in Abschnitt 23.1, »Welche Arbeiten können Sie selbst durchführen?«.

Um sich auf dem Weg zu Ihrem Smart Home bei der Planung und Installation keine Möglichkeiten zu verbauen, sollten Sie sich einen verlässlichen und kompetenten Elektromeister ins Boot holen, der idealweise bereits Erfahrungen mit KNX oder dem Bussystem Ihrer Wahl hat. Weitere Unterstützung erhalten Sie optional von einem sogenannten KNX-Systemintegrator. Lesen Sie im Folgenden, auf welche fünf Elektriker-Archetypen Sie sich einstellen müssen und wie die mögliche Zusammenarbeit aussehen würde:

 Typ 1, der KNX-Begeisterte: Sie erkennen diese Art Elektriker sehr schnell, denn Sie müssen sie nicht von Ihrem Vorhaben einer Smart-Home-Installation überzeugen. Im Gegenteil, er wird Ihnen die Vorteile eines Bussystems aufzeigen. Ihr eigener Planungsaufwand richtet sich jetzt nach dem Kenntnisstand, der Eigeninitiative und auch nach der Zusatzqualifikation des Elektrikers. Daher können Sie drei Untertypen unterscheiden:

- Typ 1a: Elektriker, der die Rolle des Systemintegrators übernimmt: Er wird Sie von sich aus mit Planungshilfsmitteln wie Raumbuch, Fragenkatalogen und Lasten-/ Pflichtenheften konfrontieren und technologieübergreifend denken, also Systeme wie KNX, EnOcean, DALI usw. zum Vorteil des Kunden kombinieren. Er wählt die Produkte außerdem herstellerunabhängig.
- Typ 1b: Ist gut mit KNX vertraut, nicht auf einen Hersteller fixiert, aber arbeitet nur nach Ihren Anforderungsvorgaben. Sind die Anforderungen geklärt, kann er selbstständig die benötigten Komponenten bestimmen, installieren und später parametrieren. Hier übernehmen Sie selbst die Rolle des Planers/Systemintegrators und stimmen sich mit dem Elektriker ab. Bei Bedarf ziehen Sie einen fachkundigen externen Planer hinzu.
- Typ 1c: Entspricht dem Typ 1b, jedoch mit dem Unterschied, dass er, wo immer möglich, zu einem bestimmten Hersteller seines Vertrauens tendiert. An dieser Stelle liegt es an Ihnen, die Vor- und Nachteile der Produkte der einzelnen KNX-Hersteller zu vergleichen und den Preis-Leistungs-Faktor für Ihren Anwendungsfall zu optimieren. Tun Sie das nicht, bekommen Sie zwar ein funktionierendes System mit allen Komponenten von einem Hersteller, nutzen aber nicht die Möglichkeit, die durch die Standardisierung von KNX gegeben ist, jeweils das beste Gerät für jedes Gewerk herstellerunabhängig einzusetzen. Oft bezahlen Sie für weniger Funktion trotzdem mehr.
- ▶ Typ 2, der KNX-Aufgeschlossene, kennt sich mehr oder weniger gut mit Automatisierungslösungen wie KNX, DALI, EnOcean usw. aus, ist aber aufgeschlossen, nimmt Ihre Ideen ernst und unterstützt sie. In diesem Szenario wird Ihre eigene KNX-Planung eine sehr wichtige Grundlage für die gesamte Elektroinstallation bilden. Je nach Kenntnisstand des Elektrikers werden Sie mehr oder weniger Details zur Planung beisteuern müssen/dürfen. Die benötigten Automatisierungskomponenten wählen Sie größtenteils selbst aus, stimmen sich aber eng mit dem Elektriker ab. Die abschließende Parametrierung der Komponenten übernehmen entweder Sie selbst oder überlassen sie dem Elektriker, oder Sie einigen sich auf eine Mischform.
- ▶ Typ 3, der konventionelle Elektriker, hat so gut wie keine Erfahrung mit Automatisierungssystemen wie KNX und wird von sich aus auch immer stark in Richtung konventionelle Gebäudeinstallation tendieren. Ihr maximaler Einsatz ist gefragt. Sie müssen dem Handwerker klarmachen, was Sie überhaupt möchten. Eine KNX-Installation unterscheidet sich wesentlich von einer Standardverkabelung, und wenn Sie nicht oft genug Planung und laufende Installationsarbeiten prüfen, werden manche Ihrer gewünschten Funktionen am Ende gar nicht oder nur über Umwege realisierbar sein.

Die Wahl des geeigneten Elektrikers ist ein wichtiger Erfolgsfaktor für Ihr Smart-Home-Vorhaben. Ein guter (KNX-)Planer/Systemintegrator wird Ihnen in der Regel den größten Teil der Arbeit abnehmen und den Erfolg sicherstellen. Gehen Sie die Partnerschaft mit einem KNX-unkundigen Elektriker ein, fällt Ihrer eigenen Rolle als Planer eine sehr große Bedeutung zu. Im optimalen Fall kämen Sie in Zusammenarbeit mit einem Elektriker/Integrator des Typs 1a mit recht wenig Wissen über die Automatisierungstechniken aus. Typ 2 und Typ 3 setzen aber einen guten bis sehr soliden Kenntnisstand und ein gehobenes Maß an Eigeninitiative voraus. Sorgen brauchen Sie sich aber keine zu machen, immerhin haben Sie sich dieses Buch gekauft, und nach dessen Lektüre werden Sie bestens gerüstet für die Herausforderung Smart Home sein.

Auch wenn Sie vorhaben, sämtliche Aufgaben an einen externen Planer zu vergeben, hilft Ihnen dieses Buch weiter. Es zeigt Ihnen, was heute Stand der Technik ist, welche Anforderungen sich überhaupt umsetzen lassen, und es soll Ihnen außerdem viele Ideen für eigene Wünsche geben. Sie sind anschließend in der Lage, dem Planer zu formulieren, was Sie von ihm und Ihrem künftigen Smart Home erwarten. Oft genug kommt der Appetit erst beim Lesen, und Sie fühlen sich auch als Nichttechniker gestärkt, das eine oder andere Teilprojekt selbst umzusetzen.

Strom macht klein, schwarz und hässlich

Bitte unterschätzen Sie bei aller Begeisterung für das Thema Heimautomation niemals die Gefährlichkeit von Strom. Es gibt 1.000 gute Gründe dafür, dass bestimmte Arbeiten nur von einem qualifizierten Elektriker durchgeführt werden sollten. Die Gefahr eines tödlichen Stromschlags ist nur eine der Risiken. Der Gesamtverband der Deutschen Versicherungswirtschaft e. V. (GDV) geht davon aus, dass in Deutschland ungefähr jeder zehnte Brand durch die Elektrik verursacht wird. Die Sach- und Personenschäden bei solchen Bränden sind oft erheblich. Giftige Gase, die bei der Erhitzung von PVC-Kabelummantelungen entstehen, sind dabei nur die Spitze des Eisbergs.

17.2.3 Die weiteren wichtigen Gewerke

Außer zum Architekten und zum Elektriker werden Sie direkten oder indirekten Kontakten zu weiteren Stakeholdern haben. Für ein umfassendes Automatisierungskonzept sprechen Sie frühzeitig die relevanten Details ab:

- Raumtemperaturregelung: Für die Einzelraumregelung bieten sich einfache 230-V-Stellantriebe an allen Heizkreisen an, als Bedienelemente eignen sich z. B. KNX-Tastsensoren.
- Heizungssteuerung: Überlassen Sie (vorerst) die Steuerung des Wärmeerzeugers der eingebauten Regelung, aber schaffen Sie eine Möglichkeit, die Heizung über mehrere Steuerleitungen mit dem Hauptverteiler zu verbinden (z. B. für Störmeldekontakte).

- ► Fensterkontakte: Lassen Sie bereits vom Fensterbauer Reed-Kontakte in alle Fenstern und Außentüren anbringen (Rahmen/Flügel oder Griff).
- Planen Sie bei der Eingangstür (und eventuell bei der Tür zwischen Garage und Haus) ein Motorschloss ein.
- Sehen Sie für motorbetriebene Jalousien, Rollladen, Sonnensegel und Ähnliches einen 230-V-Anschluss (oder SMI) vor. Auf Bedienelemente verzichten Sie und integrieren diese stattdessen in Ihre KNX-Tastsensoren.
- Analog dazu verfahren Sie beim Gewerk »kontrollierte Wohnraumbelüftung« und sonstigen Belüftungsgeräten.
- Für Ihre Außenjalousien gewinnen Sie den notwendigen Windalarm durch eine KNX-Wetterstation, einen systemspezifischen Melder von Ihrem Jalousiebauer sollten Sie nicht benötigen.

In den folgenden Kapiteln erfahren Sie die zu diesen groben Planungspunkten wichtigen Detailinformationen.

17.3 Bestimmen Sie Ihre Raumausstattung

In Abschnitt 22.1 erfahren Sie, wie Sie Ihr persönliches Raumbuch erstellen, das die Grundlage für die weitere Realisierung Ihres Smart Homes darstellt. Um Sie bei diesem wichtigen Planungsschritt zu unterstützen, finden Sie in den nächsten Abschnitten eine konkrete Ausstattungsempfehlung und optionale Erweiterungsmöglichkeiten.

17.3.1 Annahmen und generelle Informationen zur Ausstattungsempfehlung

Bei der Erstellung von Tabelle 17.2 bin ich von folgenden Annahmen und Grundprinzipien ausgegangen:

- Die Tabelle basiert auf einer sternförmigen Verkabelung zwischen Hauptverteiler und den Einzelräumen (bzw. von einer eventuellen Unterverteilung zu den Räumen).
 Für Busleitungen (KNX, 1-Wire, DALI) gilt: Ausgehend vom Verteiler führen Sie z. B. in jede Etage einen offenen Ring.
- Falls Sie Unterverteilungen einsetzen, müssen Sie zusätzlich die benötigten Verbindungen zur Hauptverteilung einplanen (mehrere großzügige Leerrohre für Strom, KNX, 1-Wire, DALI usw.).
- Bei allen Multimedia-Leitungen (Ethernet, Lautsprecher, SAT usw.) gehe ich von einer sternförmigen Verteilung zu einem zentralen Multimedia-Rack aus (z. B. 19-Zoll-Rack, siehe Abschnitt 25.4, »Ein 19-Zoll-Rack für Netzwerk und Multimedia«).

Kapitel 21 Die Smart-Home-Prinzipien

Alles was Sie in Worten beschreiben können, lässt sich auch so automatisieren.

Sie haben den Begriff *Smart Home* in den vorherigen Kapiteln an zahlreichen Stellen auftauchen sehen und haben sich sicherlich bereits selbst ein Bild von dessen Bedeutung gemacht. Was ich Ihnen noch schuldig bin, ist eine genauere Abgrenzung des Begriffs. Wann nennt man denn ein Gebäude smart und wann nicht? Woran erkennen Sie, dass Sie für sich Ihr Smart Home erfolgreich umgesetzt haben?

21.1 Was macht ein Eigenheim eigentlich smart?

»Ich gehe jetzt schnell in den Baumarkt, hole mir ein paar Funksteckdosen, die ich über das Handy steuern kann, und habe dann ein Smart Home.«

So funktioniert Smart Home natürlich nicht. Genauer gesagt, enthält der Satz gleich vier elementare Verständnisprobleme:

Erstens geht man nicht »schnell« mal wohin, um ein Smart Home zu »holen«, sondern plant ein solches sorgfältig und ausgestattet mit dem notwendigen Grundlagenwissen. Zweitens findet man echte Smart-Home-Komponenten sicherlich nicht im »Baumarkt«, sondern allenfalls das eine oder andere Zubehör bzw. Material. Drittens sind »Funksteckdosen« zwar eine mögliche Detailausführung, aber repräsentieren nicht die Basis des intelligenten Gebäudes. Und zu guter Letzt ist die Steuerung des eigenen Zuhauses per »Handy« natürlich eine angenehme Zusatzfunktion, aber eben auch nicht mehr.

Der Smart-Home-Ansatz ist vielmehr als ein von Grund auf geplantes Schlüsselmerkmal eines Zuhauses zu verstehen. Ich würde nicht so weit gehen und sagen, dass ein Gebäude um einen Smart-Home-Kern herum gebaut werden muss. Das ist zwar sicherlich möglich, aber kaum der Regelfall. Dennoch spiegeln sich die Aspekte einer intelligenten Gebäudesteuerung in den meisten Bereichen der Eigenheimplanung wider. Je früher der Wunsch nach einem Smart Home formuliert wird, desto leichter lässt er sich in einem anstehenden Projekt verwirklichen.

Der einleitende Satz in diesem Kapitel sollte beschreiben, was Smart Home nicht ist. Konsequenterweise muss an dieser Stelle die Positiv-Sichtweise folgen, also die Definition, was denn das smarte Eigenheim nun ausmacht. Ich fasse die wichtigsten Eigenschaften in vier Punkten zusammen – das Smart Home

- ► besteht aus einem zuverlässigen und standardisierten Übertragungsmedium, über das alle integrierten Teilnehmer kommunizieren,
- bindet alle (bzw. möglichst viele) Gewerke in die Heimautomation mit ein, angefangen bei Beleuchtung und Beschattung über Heizung und Belüftung bis zu Sicherheit, Multimedia und Telekommunikation,
- ► bedarf möglichst weniger Benutzereingriffe und manueller Bedienung, sondern ist dadurch smart, dass es Abläufe aufgrund von Ereignissen automatisieren und gewerkeübergreifende Funktionen kombinieren kann,
- erhöht spürbar den Wohnkomfort sowie die Sicherheit und spart Energie, verhält sich dabei aber diskret, transparent und nicht bevormundend.

Es sind diese Kerneigenschaften, die am Ende zwischen smart und eben nicht smart unterscheiden. Stellenweise besteht seitens der Medien und der Herstellerwerbung diesbezüglich aber noch eine nicht unerhebliche Menge an Hervorhebungspotenzial. Bei vielen meist proprietären Systemen wird hervorgehoben, wie vorteilhaft es ist, das Licht und die Heizung von unterwegs schalten zu können, die Spülmaschine oder Waschmaschine per Smartphone starten zu können oder direkt nach dem Aufstehen frisch gebrühten Kaffee vorzufinden.

21.2 Und was macht es nicht unbedingt noch smarter?

Alles schön und gut und im durchdachten Smart Home auch problemlos möglich, aber eben nicht die Kernaufgabe, sondern eine nette Zusatzfunktion. Solange die Frage, wer denn die Spülmaschine zu Hause einräumt, bei dieser Gelegenheit die Starttaste am Gerät nicht drückt, sondern lieber zum Smartphone greift oder sogar wartet, bis er von unterwegs das Startkommando geben kann, noch nicht geklärt ist, werden sie auch immer nur Zusatzfunktionen bleiben.

Selbiges gilt für die fernsteuerbare Beleuchtung und die Heizung. Natürlich will man es schön warm haben, wenn man nach Hause kommt, aber das soll die intelligente Heizungssteuerung ohne eine Aufforderung von unterwegs aus bitte selbstständig erledigen.

Das intelligente Licht geht ebenso von allein aus, wenn sich niemand im Raum befindet. Ein-/Ausschalten von außerhalb? Technisch gesehen ist das kein Problem, aber ob sich ein sinnvoller Anwendungsfall findet?

Bleibt noch die Kaffeemaschine: Ich mag die Idee mit dem frisch gebrühten Kaffee am Morgen, aber wer befüllt am Abend zuvor die Maschine, stellt die Kanne oder die Tassen unter das Gerät, schäumt die Milch auf und sorgt dafür, dass der Kaffee nicht zu guter Letzt als Pfütze auf dem Boden landet? – Wobei es für diesen Fall ja die vernetzten Wassermelder gäbe ...

21.3 Goldene und silberne Regeln

Die nächsten drei Abschnitte sollen Sie mit sogenannten Best Practices versorgen, also bewährten Tipps, die Sie bei Ihrem Smart-Home-Vorhaben unterstützen sollen und helfen, Planungsfehler zu vermeiden. Es war mir wichtig, dass Sie zu allen Regeln auch weiterführende Informationen in diesem Buch finden, daher sind die folgenden Kapitel gespickt mit Querverweisen. Ein Tipp prägt sich ungleich besser ein, wenn der Sinn dahinter klar wird.

21.3.1 Die goldenen Regeln

Setzen Sie bei einer so langfristigen und immer präsenten Investition wie die einer Gebäudeautomation unbedingt auf bewährte Standards!

KNX ist mit seiner hohen Verfügbarkeit, Langlebigkeit und Herstellerbandbreite ein solcher internationaler Standard. KNX-Systeme, die seit 20 Jahren tapfer ihren Dienst verrichten, sind der Normalfall, nicht die Ausnahme. Zu dieser Art Standard zähle ich auch Ethernet als Basis für Ihr Heimnetzwerk. Fast niemand würde auf die Idee kommen, irgendetwas anderes als Ethernet (oder das kabellose WLAN) in seinem privaten Netzwerk einzusetzen. Für eine Gebäudeautomation, die die Nutzungsdauer eines LAN in der Regel übertrifft, sollte diese Regel selbstverständlich sein.

Ein weiterer Aspekt, nämlich der des Wiederverkaufswerts, kommt noch hinzu. Eine standardisierte Automationslösung wird immer einen höheren Preis erzielen als eine proprietäre Bastelinstallation.

Je mehr Sie mit KNX realisieren, desto günstiger wird das System im Vergleich zur konventionellen Installation.

ie 21

Wenn Sie nur vorhaben, ein paar Steckdosen mit KNX ein- und auszuschalten, wird Sie der Einmalaufwand (also die Basiskosten für ein KNX-Netzteil, eine IP-Schnittstelle, die ETS usw.) vermutlich davon abhalten. Je mehr Gewerke wie z. B. Jalousien, Beleuchtung und Heizung Sie in Ihren Bus integrieren, desto schneller relativieren sich die Preise. Können Sie bereits auf ein KNX-Basissystem aufsetzen, kostet eine leistungsfähige KNX-Jalousiensteuerung nicht mehr als eine herstellerspezifische Wald-und-Wiesen-Steuerung.

Als Grundinstallation empfiehlt sich, auf jeden Fall die Gewerke Jalousien und Beleuchtung inklusive einer Wetterstation von Anfang an mit KNX zu planen, Heizung und Belüftung sind für ein gutes Gesamtkonzept ebenfalls fast schon essenziell.

Bestellen Sie für Ihre Fenster (und Außentüren) immer gleich Fensterkontakte mit – und zwar für alle!

Bevor Fenster eingebaut sind, lassen sie sich am günstigsten und optisch unauffälligsten mit Reed-Kontakten erweitern. Der Zustand von Fenstern (offen, geschlossen, gekippt)

ist eine wichtige Information, die Sie in vielen KNX-Anwendungen zu schätzen lernen werden. Einen Grundlagenteil zu Reed-Kontakten finden Sie in Abschnitt 29.1, »Tür- und Fensterkontakte«.

Setzen Sie auf sternförmige Verkabelung!

Steckdosen, Beleuchtung, SAT, Ethernet, Lautsprecher – verkabeln Sie generell sternförmig – von den Einzelräumen zum zentralen Stromkreisverteiler bzw. Multimedia-Rack. Eine sternförmige Leitungsführung wie in Abbildung 21.1 ist die flexibelste Variante und erlaubt Ihnen heute und in Zukunft die meisten Optionen. Ausnahmen sind nur echte Busleitungen wie z. B. KNX und 1-Wire.

Abbildung 21.1 Sternförmige Verkabelung zu einem 19-Zoll-Rack

Legen Sie alle Zuleitungen im Verteilerschrank auf Reihenklemmen auf!

Reihenklemmen kosten zwar Geld und wertvollen Platz im Verteilerschrank, sorgen aber für eine saubere und einfach zu wartende Installation, helfen enorm bei der Fehlersuche und erhöhen die Flexibilität. Aus einer schaltbaren Beleuchtung lässt sich somit sehr schnell eine dimmbare machen, und wenn Sie morgen erkennen, dass Sie doch lieber alle Steckdosen in einem Raum gemeinsam schalten möchten, ist das durch das einfache Einstecken einer Kammbrücke direkt erledigt. Wissenswertes zum Thema Reihenklemmen finden Sie zusammengestellt in Abschnitt 20.5, »Reihenklemmen«.

Planen Sie ausreichend viele Leerrohre und setzen Sie dabei auf gute Qualität und großen Querschnitt!

Leerrohre (Abbildung 21.2) schützen Ihre Gebäudeverkabelung und sorgen dafür, dass Ihre Installation auch für die Zukunft gerüstet ist. Über Leerrohre erfahren Sie mehr in Abschnitt 20.2, »Leerrohre«.

Nutzen Sie die Möglichkeit, KNX-Produkte unterschiedlicher Hersteller einzusetzen!

Einer der Vorteile von KNX ist, dass Sie bedenkenlos die für jede Funktion jeweils besten Komponenten kombinieren können. Viele kleinere KNX-Hersteller bieten zwar nicht die Produktbandbreite der großen Hersteller, können aber mit pfiffigen und attraktiven Speziallösungen aufwarten. Im Hardwareteil (Teil 4) dieses Buchs werden des Öfteren verschiedene Produkte gegenübergestellt, und das Preis-Leistungs-Verhältnis wird geprüft.

Abbildung 21.2 Leerrohre in Wand (links) und Betondecke (rechts)

Wählen Sie den größten Verteilerschrank, den Sie für Ihr Platzangebot bekommen können!

Eine KNX-Installation benötigt im Verteilerschrank (Abbildung 21.3) eine Menge Platz. Sie werden bei der Installation über jedes zusätzliche Feld dankbar sein. Eine Reserve von ca. 30 % sollte ebenfalls noch vorhanden sein.

Abbildung 21.3 Verteilerschrank mit fünf Feldern in neun Reihen (= 540 TE)

Setzen Sie bei der Planung konsequent auf Präsenzmelder bzw. Bewegungsmelder!

Präsenzmelder (PM) und Bewegungsmelder (BWM) sind zentrale Komponenten in der Heimautomation. Viele fortgeschrittene Logikfunktionen basieren auf deren Vorhandensein. Außerdem sind PM und BWM zwar auf den ersten Blick ein zusätzlicher Kostenfaktor, aber auf den zweiten schon nicht mehr. Stellen Sie sich einen längeren (dunklen) Flurbereich mit fünf angrenzenden Räumen vor. Für die Flurbeleuchtung müssten Sie an jeder der fünf Türen einen Lichtschalter anbringen. Das ist weder besonders schön noch besonders smart. Viel besser ist ein einziger gut platzierter Bewegungsmelder, der obendrein auch noch günstiger ist als fünf Taster. Zu Bewegungsmelder und Präsenzmelder finden Sie in Kapitel 29, »Messen mit Sensoren«, weitere Informationen.

Sehen Sie einen zentralen Technik-Steigschacht vor (lieber breit als tief)!

Wenn möglich, dient dieser Versorgungsschacht im Zentrum des Gebäudes der Aufnahme sämtlicher Rohrleitungen (Wasser, Belüftung) sowie der Elektroverkabelung und führt vom Technikraum im Keller bis in den Dachstuhl. Der zentrale Steigschacht hat den Vorteil, dass er Kosten spart (weniger Leitungsmaterial, weniger Leerrohr) und leicht zusätzliche Leitungen aufnehmen kann.

Reduzieren Sie (mutig) die pro Raum eingeplanten Schalter, es gilt das Motto: »Weniger ist mehr«

Für diese Regel gibt es mehrere Gründe. Erstens deckt ein Smart Home vieles automatisch ab, was Sie sonst manuell schalten müssten (präsenzgesteuerte Beleuchtung, Jalousien usw.). Zweitens kann ein durchdacht platzierter KNX-Taster viel mehr Funktionen abdecken als herkömmliche Schalter. Drittens sind einigermaßen hübsche Schalter ein echter Preistreiber, und zu guter Letzt sehen typische Schalterbatterien gelinde gesagt »bescheiden« aus, außerdem widersprechen sie dem Smart-Home-Gedanken.

Platzieren Sie Rauchwarnmelder mindestens in jedes Schlafzimmer und in alle Fluchtwege

Rauchwarnmelder (siehe Abschnitt 29.5, »Rauchwarnmelder«) sind effektive Lebensretter und dürfen in keinem Eigenheim fehlen. Eine Vernetzung ist zwar nicht essenziell, aber so günstig wie zur Planungsphase wird sie nie wieder.

Fahren Sie jeden Raum mit mindestens einer NYM-5x1,5-Installationsleitung (oder 5x2,5) für die Versorgung der Steckdosen und einer weiteren fünfadrigen Leitung für die Beleuchtung an!

Die zusätzlichen Adern gegenüber einer NYM-3x1,5-Leitung kosten (einmalig) nur einen vernachlässigbaren Aufpreis, erhöhen aber die Flexibilität Ihrer Installation beträchtlich und erlauben auch zukünftige Erweiterungen. Mit einer fünfadrigen Leitung können Sie z. B. drei Steckdosengruppen oder Leuchten unabhängig voneinander schalten. Außerdem ermöglichen die beiden zusätzlichen Adern den einfachen Einsatz von DALI.

Sparen Sie generell nicht an der Adernanzahl von Zuleitungen, es ist wichtig, genügend Reserven für spätere Erweiterungen zu haben. Nehmen Sie Tabelle 17.2 in Abschnitt 17.3.2, »Eine konkrete Ausstattungsempfehlung«, als Richtlinie.

KNX ist als dezentrales System konzipiert. Folgen Sie diesem Grundgedanken!

Das Thema erfordert ein bisschen Umdenken, ich habe ihm daher einen eigenen Abschnitt (21.4.1, »Zentral oder dezentral?«) gewidmet.

Wenn es die baulichen Voraussetzungen erlauben, setzen Sie auf verkabelte Verbindungen

Die Regel gilt sowohl für KNX als auch für andere Übertragungsmedien. Wo immer Sie die Chance haben (besonders im Neubau), setzen Sie konsequent auf KNX TP (die grüne KNX-Twisted-Pair-Verkabelung) bzw. Cat.7-Netzwerkleitungen und betrachten funkbasierte Systeme (WLAN, KNX RF) oder Powerline als Ergänzung. Argumente für eine verkabelte Verbindung finden Sie ein paar Seiten weiter in Abschnitt 21.4.2, »Kupfer oder Luft?«.

Denken Sie in Szenen. Szenen zählen mit zu den großen Stärken einer KNX-Automatisierung

Mit einer Szene fassen Sie mehrere unterschiedliche Schalthandlungen zusammen, die durch ein einziges Ereignis ausgelöst werden. Beispiel: Sie schalten den Fernseher an, worauf automatisch das Licht heruntergeregelt wird, die Jalousien herunterfahren, eine kleine Effektbeleuchtung eingeschaltet und das Radiogerät ausgeschaltet wird. Das ist die Szene »Fernsehen«, und dafür benötigen Sie nicht mal einen Schalter. Als wichtiges KNX-Feature wurde den Szenen ein eigener Abschnitt (21.5, »Denken Sie in Szenen«) gewidmet.

21.3.2 Die silbernen Regeln

Wenn es goldene Regel gibt, sollte es konsequenterweise auch silberne Regeln geben. Hier sind sie:

Wählen Sie für REG-Geräte bevorzugt Modelle mit vielen Kanälen!

REG-Geräte mit vielen Kanälen sind, pro Kanal gesehen, günstiger als Typen mit weniger Kanälen. Der Preis der Geräte steigt nicht linear mit der Anzahl der Kanäle. Außerdem zählt ein 12-fach-Schaltaktor genauso als *ein* Busteilnehmer wie ein Schaltaktor mit nur zwei Kanälen.

Planen Sie neben einer KNX-Leitung direkt auch eine eigene 1-Wire-Leitung mit ein!

1-Wire-Temperatursensoren, Feuchtigkeitssensoren und viele weitere sind sehr günstig und können an vielen Stellen im Smart Home wertvolle Dienste leisten. Idealerweise sollte in jedem Raum die Möglichkeit bestehen, Sensoren mit dem durchgeführten 1-Wire-Bus zu verbinden. Über ein Gateway bilden Sie die Sensorwerte später transparent auf den KNX ab. Details zum 1-Wire-Bus finden Sie in Kapitel 10, »1-Wire: nicht nur >eine< Ader«.

Sehen Sie im Technikraum eine von jeglichem Bussystem unabhängige Beleuchtung vor!

Hier dürfen Sie ausnahmsweise so konventionell wie möglich sein. Die unabhängige Beleuchtung benötigen Sie im Ernstfall bei Arbeiten am Verteilerschrank.

Setzen Sie für strategisch wichtige Steckdosen bzw. Installationsdosen Schaltaktoren mit eingebauter Strommessung ein!

Die Strommessung (oder sogar Wirkleistungsmessung, Abbildung 21.4) erlaubt Ihnen zum einen die Messung des Stromverbrauchs der angeschlossenen Geräte, kann aber auch sehr gut für Logikfunktionen benutzt werden (Entscheidung, ob ein Gerät läuft oder nicht, Feststellen, ob die Waschmaschine fertig ist, einen Defekt an der Gefriertruhe erkennen usw.). Ein Anwendungsbeispiel finden Sie in Abschnitt 53.2, »Mehr Möglichkeiten durch Stromerkennung«.

Abbildung 21.4 MDT-Schaltaktor mit Wirkleistungsmessung

Bestehen Sie auf mehr als nur die Mindestausstattung an RCDs (Fehlerstromschutzschalter, auch FI genannt)!

Mehrere RCD-Kreise machen Sie unabhängiger bei Ausfällen oder Fehlern. Gute Praxis ist z. B. je ein RCD für: Steckdosen EG, Beleuchtung EG, Steckdosen OG, Beleuchtung OG, Kühlschrank/Gefrierschrank, Außenbereich.

Denken Sie wohlwollend über ein Motorschloss mit z. B. Transponderöffnung an der Haustür nach!

Es ist zwar persönlicher Geschmack, aber eine sich selbst öffnende Tür (autorisierte Person vorausgesetzt), die zugleich auch immer fest verschlossen ist, wenn das Haus verlassen wird, möchten viele Smart-Home-Besitzer (ich selbst eingeschlossen) nicht mehr missen wollen. Details zum Motorschloss finden Sie in Abschnitt 39.2, »Sie werden es nicht mehr missen wollen: Motorschloss«.

Schaffen Sie sich eine Aufzeichnungsmöglichkeit für wichtige anfallende Daten!

In einem Bussystem fällt einiges an Daten an. Viele davon sind interessante Sensorwerte. Es lohnt sich sehr, diese mit einem geeigneten System aufzuzeichnen und grafisch auswerten zu können. Die Nutzungsmöglichkeiten sind vielfältig, sie reichen von der einfachen Verständnisverbesserung bis hin zu Heizungsoptimierung, Fehlerdiagnose und Energieeinsparung. Ein sehr leistungsfähiges System stelle ich Ihnen in Kapitel 61, »Die Möglichkeiten von Smart Metering«, zum Selbstbau vor.

Eine Investition in aufwendige RTR (Raumtemperaturregler mit Display) ist oft nicht notwendig.

Entsprechende Heizungsaktoren (siehe Abschnitt 30.7, »Heizungsaktor«) und einfache Temperatursensoren (z. B. 1-Wire) in den Einzelräumen sind ebenso zielführend und weitaus günstiger. Temperatursollwerte werden viel zu selten verändert, eine Veränderung über z. B. eine zentrale Visualisierungsoberfläche reicht in der Regel vollkommen aus. Theoretisch kommen Sie sogar ganz ohne Visualisierung aus, wenn Sie die Sollwerte rein über die ETS einstellen.

1-Wire-Temperatursensoren haben übrigens einen weiteren Vorteil gegenüber anderen Lösungen: Sie sind nicht nur günstig, sondern auch sehr genau.

Verschwenden Sie (besonders während der Bauphase/Planungsphase) keine Zeit mit der Auswahl der Visualisierung!

Zuallererst muss das KNX-Grundgerüst stehen und für sich funktionieren. Basisfunktionen realisiert man ohne einen zentralen Visualisierungsrechner. Nach Einzug bleibt genügend Zeit, sich mit allen möglichen Visualisierungen und Mobile-Anwendungen zu beschäftigen.

Bauen Sie einen Prototyp!

Eine gute Möglichkeit, um sich mit der Smart-Home-Technik anzufreunden, ist der Aufbau eines kleinen Minimalsystems (Abbildung 21.5), und zwar bevor es mit dem eigenen Bauprojekt ernst wird. Dazu benötigen Sie nur wenige Komponenten, die Sie zudem später in der echten KNX-Installation wiederverwenden können. Sehen Sie sich zu dem Thema auch Abschnitt 7.5, »Meistern Sie den Einstieg!«, an.

Setzen Sie (mindestens) bei SAT- und LAN-Anschlüssen auf extra große Unterputzinstallationsdosen!

Viel Platz für die frustfreie Installation finden Sie z. B. in den Kaiser-Elektronikdosen (siehe Abschnitt 20.3.2, »Unterputzinstallation«).

Abbildung 21.5 KNX-Prototyp (Netzteil, IP-Interface, Schaltaktor)

Planen Sie viele Beleuchtungsauslässe ein!

Eine gute Lichtplanung besteht aus Grundbeleuchtung, Effekt-/Stimmungsbeleuchtung und Arbeitsbeleuchtung, eventuell noch Nachtbeleuchtung. Sehen Sie eine großzügige Anzahl an verschiedenen Beleuchtungsmöglichkeiten (Spots, Wandlampen, Stehlampen, LED-Leisten usw.) vor. Eine angenehme Stimmung entsteht viel eher durch mehrere kleinere Beleuchtungen als wenige große.

Sehen Sie an geeigneten Positionen Luftgütesensoren vor!

Temperaturmessung und Feuchtigkeitssensoren zählen bereits zur erweiterten Basisausstattung, CO₂- bzw. VOC-Sensoren mit 1-Wire- oder KNX-Schnittstelle tragen ebenfalls zum Wohnklima bei. Beispiele finden Sie in Abschnitt 29.8, »Luftgütesensoren«.

21.3.3 Was gern vergessen oder falsch gemacht wird

Gibt es nach den goldenen und silbernen Regeln keine bronzenen? Nein, die gibt es nicht, aber dafür habe ich Ihnen ein paar häufige Pitfalls (englisch für Fallgruben) zusammengestellt, in die Sie nach der Lektüre dieses Kapitels nicht mehr fallen werden.

Vergessen Sie bitte nicht:

- ► Ein Leerrohr für den Außentemperaturfühler der Heizung (Nordseite) und die Wetterstation an der Fassade oder auf dem Dach.
- Auch Haustür und eventuell Terrassentür bekommen einen Türkontakt.
- ► Im Keller benötigen Sie ebenfalls Bewegungsmelder, Feuchtigkeitssensoren und sonstige Helferlein.
- Sehen Sie ausreichend Leerrohre f
 ür die Außenbereiche vor (Gartenbeleuchtung, Terrassenbeleuchtung und Strom, Fassadenbeleuchtung, Bewegungsmelder, Kameras usw.).

Überlegen Sie sorgsam:

- Benötigen Sie wirklich sogenannte intelligente Haushaltsgeräte? Einige der Leistungsversprechen lösen Sie oft günstiger mit KNX (z. B. Fertig-Meldung der Waschmaschine oder Spülmaschine über Schaltaktoren mit Strommessung oder Wirkleistungsmessung).
- Ist eine Unterverteilung neben Schlafräumen oder Arbeitszimmer vermeidbar? Die Relais von Schaltaktoren sind nicht geräuschlos (Ausnahmen: Aktoren für kleine Leistungen mit Halbleiterschaltelementen) und können neben einem Schlafzimmer schnell für Aufregung sorgen.
- Ist die Schaltleitung für den Haustüröffner von außen zugänglich? Durch Abmontieren der Türkommunikationsanlage und Kurzschließen der Steuerleitungen darf die Haustür nicht zu öffnen sein. Ein Türkommunikationssystem (Beispiel in Kapitel 45, »Telefon, Türkommunikation und Zutrittskontrolle«) vermeidet diesen Schwachpunkt.

21.4 Wichtige Grundsätze

Zwei besonders wichtige und im vorherigen Abschnitt bereits erwähnte Grundprinzipien möchte ich gern nochmals detailliert betrachten.

21.4.1 Zentral oder dezentral?

Eine richtig ausgelegte Gebäudeautomatisierung im Allgemeinen und eine KNX-Installation im Besonderen sind eine gut harmonisierte Mischung aus *dezentralem* und *zentralem* System.

Im Grundprinzip ist KNX aus guten Gründen dezentral ausgelegt. Jedes KNX-Gerät (z. B. Binäreingang, Aktor, Wetterstation, Tasterinterface) besitzt eine eigene Intelligenz und arbeitet unabhängig von irgendeinem zentralen Rechner. Als gemeinsame Ressource benötigen die KNX-Geräte lediglich den Bus als physikalische Leitung und eine KNX-Spannungsversorgung. Als Mindestaufbau ist bereits ein einziges Gerät plus Spannungsversorgung voll funktionsfähig.

Vorteile der dezentralen Architektur

Der Hauptvorteil dieser dezentralen Architektur ist, dass bei Ausfall eines Geräts alle anderen Geräte trotzdem weiterarbeiten. Es sind immer nur jene Funktionen gestört, die das ausgefallene Gerät betreffen. Die Ausnahme ist die KNX-Spannungsversorgung. Fällt dieses Gerät aus, ist der gesamte darüber versorgte Bus (bzw. die Buslinie) funktionsunfähig.

Dezentrale Systeme wie KNX sind außerdem nahezu beliebig erweiterbar und offen für individuelle Wünsche. Das von allen Geräten zu unterstützende Kommunikationspro-

tokoll ist standardisiert, die KNX-Geräte werden von verschiedenen Herstellerfirmen produziert. Dadurch sind sowohl viele Standardprodukte als auch wenige, dafür hoch spezialisierte Lösungen möglich. Eine Zusammenarbeit der Einzelprodukte ist immer gewährleistet, eine Erweiterung oder der Ersatz einer zentralen Komponente wie z. B. einem Server ist nicht erforderlich.

Mischen von zentralen und dezentralen Komponenten

Die folgende Abbildung 21.6 zeigt Ihnen eine typische KNX-Installation, bestehend aus dezentralen Komponenten, einer zentralen Logik-Engine (z. B. HomeServer) sowie den kritischen Ressourcen (die KNX-Spannungsversorgung).

Abbildung 21.6 Zentrale und dezentrale Komponenten

Streng genommen ist natürlich auch der Bus selbst eine zwar passive, aber dennoch kritische Komponente. Bei Kurzschluss oder Unterbrechung der Busleitung findet entweder keine bzw. eine nur eingeschränkte Kommunikation statt, oder es fallen sogar sämtliche Teilnehmer wegen der fehlenden Spannungsversorgung aus.

Eine Logik-Engine auf einem zentralen Rechner bietet zwar in der Regel durch ihre freie Programmiermöglichkeit (z. B. openHAB, SmartHome.py) wesentlich mehr Möglichkeiten als die Applikationsprogramme der KNX-Geräte, verleitet dadurch aber auch zur Schaffung von Abhängigkeiten, die nicht zwingend notwendig sind.

Wie man es nicht macht

Was will ich damit sagen? Stellen Sie sich vor, Sie würden Ihre gesamte Beleuchtungssteuerung über eine Logik-Engine führen, und jeder Präsenzmelder würde der Logik ein Telegramm zum Einschalten der Beleuchtung senden. Der zentrale Rechner hätte zur Aufgabe, die Telegramme nur dann an den entsprechenden Dimmaktor oder Schaltaktor zu senden, wenn ein implementierter Gesamtbeleuchtungsschalter in der Position »Ein« steht. Dieser unglückliche Aufbau hätte zur Folge, dass bei Ausfall des Zentralrechners keine einzige Beleuchtung mehr funktionieren würde, die Vorteile eines dezentralen Systems wären erfolgreich zunichtegemacht worden.

Wie man es besser macht

Die skizzierte Beispielanwendung würde unter der Berücksichtigung, dass der KNX-Bus wo immer möglich dezentral genutzt werden sollte, so aussehen:

- ► Alle Präsenzmelder senden ihre Schaltkommandos direkt an die zugeordneten Schaltaktoren/Dimmaktoren.
- ► Die zentrale Logik kann über den Gesamtschalter die komplette Beleuchtung zusätzlich abschalten.

Ein Ausfall des Zentralrechners hätte in dem Fall nur den Verlust der Zentral-Aus-Funktion zur Folge, die normale Beleuchtungssteuerung funktionierte unabhängig weiter. Natürlich könnte die Zentral-Aus-Funktion auch nur über KNX-Geräte allein (z. B. Zwangsführung oder Szenen) sozusagen »nativ« gelöst werden, das Beispiel soll aber bewusst die Arbeitsteilung von zentralen und dezentralen Anteilen zeigen.

Was ist die Schlussfolgerung?

Achten Sie beim Entwurf Ihrer Automatisierungsfunktionalität stets darauf, dass Sie Grundfunktionen wo immer möglich nur nativ über (KNX-)Geräte selbst abdecken. Präsenzmelder, Taster und Aktoren haben mittlerweile sehr leistungsfähige Applikationsprogramme, die bei entsprechender Parametrierung weit mehr ermöglichen, als man zunächst vermuten könnte. Mit der ETS als Werkzeug kombinieren Sie auf clevere Art die einzelnen Fähigkeiten Ihres gesamten Gerätefuhrparks am KNX-Bus.

Eine zentrale Logik kommt erst dann ins Spiel, wenn es um die Realisierung von Komfortfunktionen geht, die Fähigkeiten der Einzelgeräte nicht mehr ausreichen oder Sie eine Visualisierung verwirklichen möchten.

21.4.2 Kupfer oder Luft?

Bevorzugen Sie, wo immer möglich, eine verkabelte Verbindung. Bei einem Neubau oder einer Sanierung haben Sie die (vielleicht einmalige) Chance, Busleitungen für alle Geräte sowie künftige Erweiterungen vorzusehen. Das KNX-System mit TP1 Medium (Twisted Pair) erlaubt Ihnen eine günstige und sehr flexible Verkabelung. Außer einem geschlossenen Ring sind alle Topologien erlaubt. Die »grüne« TP1-Verkabelung eröffnet Ihnen außerdem mit Abstand das breiteste Spektrum an Automatisierungskomponenten. Funkbasierte Systeme (z. B. EnOcean oder KNX RF) bieten sich im Gegensatz dazu immer dann an, wenn Sie

- ▶ keine Möglichkeit für eine Busverkabelung haben,
- eine reine Nachrüstlösung suchen (z. B. für Mietwohnungen),

- ▶ Funk als Ergänzung zu einem verkabelten System planen oder
- ▶ eine Notlösung benötigen, falls Sie in der Planung etwas vergessen haben.

Als weitere Alternative zu einer Twisted-Pair-Verkabelung darf das Medium Powerline (Stromleitung) nicht unerwähnt bleiben. So bietet z. B. KNX PL (Powerline) die Möglichkeit, einen KNX-Bus auf ein bestehendes Stromnetz abzubilden. Jedoch gilt auch hier, obwohl kabelgebunden, der Grundsatz, dass Sie so viel wie irgendwie möglich mit TP1-Verkabelung umsetzen sollten. Powerline spielt seine Stärken eher im Bestandsbau und bei späteren Erweiterungen aus. Dort muss es allerdings mit den funkbasierten Systemen konkurrieren, die zudem die größere Flexibilität und Produktvielfalt besitzen.

Beachten Sie bitte außerdem, dass Powerline-Systeme nicht uneingeschränkt einsetzbar sind. Hohe induktive Lasten auf dem Stromnetz können PL an bestimmten Punkten sogar unmöglich machen, daher sollte PL auch immer vor Ort »ausprobiert« werden.

Detaillierte Informationen zu den unterschiedlichen Übertragungsmedien finden Sie in den Abschnitten zu KNX (siehe Abschnitt 8.8, »Wie funktioniert die Übertragung?«) und EnOcean (siehe Kapitel 11, »Energy Harvesting mit EnOcean«).

21.5 Denken Sie in Szenen

Szenen zählen mit zu den coolsten KNX-Features, aber was muss man sich darunter vorstellen? Eine Szene dient dazu, mehrere und oft voneinander unabhängige Schaltzustände herzustellen, und zwar reproduzierbar. Um eine Szene auszulösen, bedarf es nur eines einzigen Tastendrucks oder dem Kommando einer Logikfunktion, um ein definiertes Set an Geräten zur gewünschten Aktion zu bewegen.

Eine gedachte Szene »Duschen« würde beispielsweise die Badezimmerjalousien schließen, das Hauptlicht auf 60 % dimmen, die farbige Duschbeleuchtung einschalten, die Musikausgabe starten und den elektrischen Zusatzheizkörper für 20 Minuten betreiben. Die gewerkeübergreifende Funktionalität ist dabei eine typische Charakteristik von KNX-Szenen. Je nach Parametrierung der KNX-Anlage können Szeneneinstellungen vom Benutzer selbst verändert werden. Im obigen Beispiel könnte der Dimmwert der Hauptbeleuchtung als anpassbare Größe definiert und ohne erneute ETS-Parametrierung als Einstellung für den nächsten Szenenabruf gespeichert werden.

21.5.1 Eine Szene als Schema dargestellt

Vergleichen Sie bitte Abbildung 21.7 und Abbildung 21.8 miteinander. Abbildung 21.7 zeigt eine gewöhnliche Ansteuerung eines Schaltaktors über ein KNX-Telegramm. In Abbildung 21.8 hingegen löst der Taster eine Szene (»Fernsehen«) aus, das Szenentelegramm wird von insgesamt drei unterschiedlichen Aktoren empfangen. Jeder Aktor für sich führt nahezu gleichzeitig die für ihn parametrierte Aktion für diese Szene aus.

Kapitel 25 Schaltschrank – der Maschinenraum

Sie sind jetzt mit sämtlichen Planungsgrundlagen vertraut und bereit, alles über Ihre neue Hardware im intelligenten Gebäude zu lernen. Beginnen wir ganz von vorne – wo kommt der Strom ins Haus?

Ein Großteil der Gerätschaft für eine intelligente Gebäudesteuerung wird im Stromkreisverteiler (Schaltschrank) untergebracht. Überhaupt wird der gesamte Technikraum zu einem Ihrer am häufigsten benutzten Räume werden, zumindest so lange, wie Sie neue Automatisierungsfunktion noch nicht bequem vom Arbeitsplatzrechner aus umsetzen können. Sie sollten sich also mit Ihrem Zweitwohnsitz vertraut machen. Dafür sind Sie in diesem Kapitel richtig.

25.1 Hausanschlusskasten, Zählerschrank, Stromkreisverteiler

Die Stromzuführung des Stromversorgers (EVU = Energieversorgungsunternehmen) wird als *Hausanschluss* bezeichnet. Sehen Sie eine grafische Darstellung in Abbildung 25.1. Dabei wird das Gebäude, in der Regel über einen Erdanschluss, durch die *Hauptanschlussleitung* mit dem *Hausanschlusskasten* verbunden. Den Hausanschlusskasten (HAK) erkennen Sie an seiner transparenten Abdeckung und den drei darin installierten *NH-Sicherungen* (Niederspannungs-Hochleistungs-Sicherung), manchmal auch noch Hauptsicherungen oder Panzersicherungen genannt.

Der Zählerschrank wird über die *Hauptleitung* mit dem HAK verbunden und enthält neben den Vorsicherungen (NH) oder selektiven Leitungsschutzschaltern (SLS) auch mindestens einen Zähler. Zähler messen die verbrauchte elektrische Energie. Falls Sie eine Fotovoltaikanlage installiert haben, findet im Zählerschrank ein weiterer Zähler Platz, der die von Ihnen eingespeiste Energie misst. Für bestimmte Heizungsanlagen (z. B. Wärmepumpe) werden weitere Zähler (und eventuell Tarifsteuergeräte) installiert und ebenso, wenn es sich bei dem Gebäude um ein Mehrparteienhaus handelt.

Im *Stromkreisverteiler* (Haupt-/Unterverteilungen) werden bei der Elektroinstallation die benötigten Einbaugeräte wie Fehlerstromschutzschalter (RCD bzw. FI), Leitungsschutzschalter (LS), Netzteile, Relais und Stromstoßschalter montiert. Ausgehend vom Stromkreisverteiler, versorgen einzeln abgesicherte Zuleitungen alle weiteren Räume. In größeren Gebäuden kommen zusätzlich zur Verteilung im Keller oft weitere Unterverteilungen (z. B. pro Etage) zum Einsatz.

25

Abbildung 25.1 Hausanschlusskasten, Zählerschrank und Stromkreisverteiler

Für kleinere Installationen werden Zählerschrank und Verteilerschrank auch gerne mal vereint. Falls Sie für Ihr Vorhaben noch mitten in der Planungsphase stecken, sehen Sie, wenn möglich, aber zwei getrennte Schränke vor. Über den Zugewinn an Installationsraum werden Sie sich (und der Elektriker) unter Garantie freuen.

Ein Großteil Ihrer künftigen Smart-Home-Gerätschaft wird im Verteilerschrank beherbergt sein. Für alle Geräte in REG-Bauweise (REG = Reiheneinbaugerät) ist das der vorgesehene Einbauort. Grund genug, sich näher mit dem Thema Verteilerschrank zu beschäftigen – dem Maschinenraum des Smart Homes.

25.2 Der Stromkreisverteiler im Detail

In Deutschland sind Verteiler nach DIN 43880 standardisiert. Ein Verteiler besitzt mehrere Installationsreihen, sogenannte *Hutschienen*, die vertikal zueinander in einem Abstand von 150 mm montiert sind. Der Abstand darf bei Bedarf in einem 25-mm-Raster vergrößert werden.

25.2.1 Felder und Teilungseinheiten

Horizontal ist ein Verteiler in *Felder* unterteilt. Ein Feld bietet Platz für zwölf *Teilungseinheiten (TE)* mit je 17,5 mm Breite. Die für REG-Module benötigte Einbaubreite wird ebenfalls in der abstrakten Einheit TE angegeben. In einem Verteilerfeld haben somit Geräte mit einer Gesamtbreite von 12 TE in Hutschienenmontage Platz. Aufgeteilt werden könnten die verfügbaren 12 TE z. B. auf 1 Gerät mit 4 TE plus 1 Gerät mit 8 TE oder auch 12 Geräte zu je 1 TE. In der Praxis findet man sehr oft einen RCD (4 TE) kombiniert mit 8 LS (je 1 TE).

Die Kapazität eines Verteilers wird ebenfalls in Teilungseinheiten angegeben. Ein Kleinverteiler mit 4 × 12 TE besteht beispielsweise aus 4 Hutschienenreihen zu je 12 TE, was insgesamt einer Kapazität von 48 TE entspricht.

25.2.2 Die Innenausstattung

Noch schwieriger als die Wahl des richtigen Verteilerschranks selbst ist dessen Innenausstattung. Die schiere Menge an unterschiedlichen für den Innenausbau eines Verteilers verfügbaren Bausteinen überfordert sehr schnell. An dieser Stelle benötigen Sie die kompetente Hilfe des Elektrikers, der sich im Produktangebot der großen Hersteller zu Hause fühlt. Ansonsten laufen Sie Gefahr, das eine oder andere Zubehör zu vergessen oder falsch auszuwählen.

Wenn Sie sich für Schaltschranksysteme der Firma Hager (*www.hager.de*) entscheiden, können Sie sich im gewissen Rahmen auch elektronische Unterstützung holen. Auf der Download-Seite *http://www.hager.de/downloads-software/produkt-und-planungssoftware/magnetplaner/77406.htm* hält Hager die Software *Magnetplaner* zum kostenlosen Einsatz bereit. Mit ein bisschen Forschergeist gelingt es, ein Modell des Verteilers aus den verfügbaren Bausteinen zusammenzustellen. Für einen Schrank des Typs ZB55S mit 5 × 9 Feldern und den Maßen 1.400 mm × 1.300 mm × 205 mm (H × B × T) ergibt sich die in Abbildung 25.2 gezeigte exemplarische Aufteilung:

Abbildung 25.2 Hager ZB55S mit 5 × 9 Feldern

Die oberen beiden Reihen werden vollständig abgedeckt, dahinter verbergen sich später die Reihenklemmen. Die restlichen sieben Reihen besitzen jeweils die gewohnte 12 TE breite Aussparung, und zwar je fünfmal, sodass Sie insgesamt Geräte mit 420 TE Breite installieren können. Dazu kommen zwei komplette Reihen je fünf Felder für Reihenklemmen.

Die Bausteine, aus denen sich das Innenleben des abgebildeten ZB55S zusammensetzt, haben folgende Bezeichnungen (siehe Tabelle 25.1):

Baustein	Maße (H × B)	geschlossen/geschlitzt	Anzahl
UD21A1	300 × 250 mm	geschlossen	1
UD21B1	300 × 250 mm	geschlitzt	2
UD22A1	300 × 500 mm	geschlossen	2
UD22B1	300 × 500 mm	geschlitzt	4
UD31B1	450 × 250 mm	geschlitzt	1
UD32B1	450 × 500 mm	geschlitzt	2

 Tabelle 25.1
 Beispiel: Innenausstattung für Hager ZB555

Die Bausteinbreite von 500 mm hat insbesondere in den oberen zwei Reihen einen Vorteil: Die Hutschienen erstrecken sich nicht über ein, sondern über zwei Felder und können durchgehend mit Reihenklemmen (Abbildung 25.3) bestückt werden, was einen nicht zu unterschätzenden Platzgewinn bedeutet.

Abbildung 25.3 Reihenklemmen im Verteilerschrank

25.3 Hinweise zur Dimensionierung, Installation und Platzierung

Sie wissen jetzt, wie das Innenleben eines Stromkreisverteilers aufgebaut ist, aber für welche Größe sollten Sie sich entscheiden, und wie teilen Sie mehrere Verteiler sinnvoll auf?

25.3.1 Welches ist die richtige Größe für mich?

Auf diese Frage gibt es aus Sicht eines begeisterten Smart-Home-Bewohners nur eine mögliche Antwort: so groß wie möglich. Jedes zusätzlich verfügbare Feld im Verteiler bedeutet Flexibilität und Erweiterbarkeit.

Die Rundum-sorglos-Lösung erreichen Sie auf jeden Fall mit folgender Kombination, bestehend aus separatem Zählerschrank und Stromkreisverteiler:

- Zählerschrank: Hager Typ ZB53S (IP44) mit je 3 Feldern in 9 Reihen, Maße: (H × B × T): 1.400 mm × 800 mm × 205 mm
- Stromkreisverteiler: Hager Typ ZB55S (IP44) mit je 5 Feldern in 9 Reihen, Maße: (H × B × T): 1.400 mm × 1.300 mm × 205 mm

Natürlich geht es auch kleiner. Wie viel kleiner, ergibt sich aus der Verteilerplanung, die Sie in Abschnitt 22.3, »Die Verteilerplanung«, kennengelernt haben. Rechnen Sie zur ermittelten Anzahl der benötigten Teilungseinheiten jedoch noch 25 bis 30 % Reserve dazu. Sie werden über Erweiterungen durch zusätzliche REG-Module schneller nachdenken, als Sie sich während der Planung vorstellen können.

25.3.2 Wie erfolgt die Leitungseinführung?

Leitungen können Sie in den Stromkreisverteiler von oben oder von unten einführen, entsprechende Durchführungsstellen ermöglichen zudem unterschiedliche Durchmesser. Bei der Art und Weise, wie Sie die Leitungen in den Verteiler einführen, haben Sie die Wahl zwischen zwei Vorgehensweisen:

- 1. Sie führen die Leerrohre bis in den Verteiler ein und können dann auch Einzeladern in den Leerrohren führen. Einzeladern dürfen außerhalb des Verteilers nicht ungeschützt geführt werden (ohne Mantel bzw. ohne Leerrohr).
- 2. Sie lassen das Leerrohr außerhalb des Verteilers enden, dürfen aber dann nur Mantelleitungen (z. B. NYM-J) in den Verteiler führen (Einzeladern sind nicht erlaubt).

25.3.3 Was gilt es bei Größe und Aufteilung zu beachten?

Sofern Sie im aktuellen Stadium Ihres Smart-Home-Vorhabens noch Einfluss auf die Elektroverteilung nehmen können, achten Sie bitte insbesondere auf folgende Punkte:

- Wenn möglich, Zählerschrank und Stromkreisverteiler separat.
- ► Den Zählerschrank groß genug für weitere zukünftige Zähler wählen (Wärmepumpe, Fotovoltaik).
- Den Stromkreisverteiler so groß wie möglich wählen und neben dem Zählerschrank montieren.
- Eine Platzierung des Stromkreisverteilers möglichst nahe am zentralen Technikschacht spart Leitungsmaterial.
- Installation der Multimedia- und Netzwerkkomponenten (Switches, DSL-Router, Server, Verstärker) nicht im Stromkreisverteiler, sondern in einem eigenen 19-Zoll-Rack (siehe Abschnitt 25.4, »Ein 19-Zoll-Rack für Netzwerk und Multimedia«).

Ergibt sich bei Ihrer Planung die Notwendigkeit, weitere Unterverteilungen (z. B. eine pro Etage) zu installieren, achten Sie darauf, dass ausreichend Leerrohre zwischen Hauptverteilung und Unterverteilung vorhanden sind. Neben entsprechend stark dimensionierten Stromleitungen benötigen Sie in der Unterverteilung auf jeden Fall Folgendes:

- ► KNX-Busleitung
- ▶ weitere Busverbindungen wie DALI, 1-Wire, DMX, Türkommunikationssystem usw.
- Cat.7-Leitungen
- ▶ Reserve für künftige Erweiterungen

Eine Unterverteilung in der Nähe von Wohnräumen oder Schlafräumen hat einen Nachteil, den es zu berücksichtigen gilt: Schaltaktoren verwenden zum Schalten elektrischer Lasten normalerweise mechanische Relais, die akustisch durchaus wahrnehmbar sind. Je nach Modell der eingesetzten Schaltaktoren kann das entstehende Geräusch, unverblümt gesagt, furchtbar nerven. Bei einer komplett zentralen Installation im Keller hingegen nehmen Sie die Geräusche eine Etage höher nicht wahr.

Ein weiterer Nachteil von Unterverteilungen im Vergleich zu einer einzigen Zentralverteilung ist die schlechtere Ausnutzungsmöglichkeit von KNX-Geräten mit mehreren Kanälen. Ein Beispiel dazu: Wenn Sie im Hauptverteiler insgesamt fünf Schaltaktorkanäle brauchen und in der Unterverteilung drei, müssen Sie einen 8-fach-Aktor plus einen 4-fach-Aktor installieren, obwohl Sie eigentlich nur acht Kanäle insgesamt benötigen.

25.4 Ein 19-Zoll-Rack für Netzwerk und Multimedia

Als *19-Zoll-Rack* bezeichnet man ein Gestell für den Einbau von elektronischen Geräten mit der genormten Gerätebreite von 19 Zoll. Anders gesagt, Geräte, die für den 19-Zoll-Rack-Einbau geeignet sind, besitzen eine Frontplattenbreite von genau 19 Zoll (= 48,26 cm).

Die Frontplattenhöhe von 19-Zoll-Geräten (Einschüben) ist nicht beliebig, sondern gerastert, wobei die Rasterung immer ein Vielfaches einer *Höheneinheit (HE)* beträgt. Eine HE ist mit 1,75 Zoll (= 44,45 mm) normiert. Um den Einbau zu erleichtern, wird von der Frontplatte einmal 1/32 Zoll (= 0,787 mm) in der Höhe abgezogen. Demnach besitzt z. B. ein Ethernet-Switch mit 1 HE eine Frontplattenhöhe von etwas weniger als 1,75 Zoll und ein kleiner 19-Zoll-Server mit 2 HE folglich 3,5 Zoll.

19-Zoll-Geräte werden an senkrecht verlaufenden Profilschienen befestigt mit je zwei Schrauben auf beiden Seiten. Die Profilschienen sind an der Vorderseite des Racks montiert und bilden eine 17,75 Zoll (= 45,09 cm) breite Öffnung für die Einschubgeräte. Die in die Schienen eingebohrte Lochreihe besitzt je Höheneinheit (HE) drei Löcher in zwei Abständen zu 0,625 Zoll (= 15,88 mm). Alternativ können es auch quadratische Stanzlöcher sein, in die dann sogenannte Käfigmuttern eingesetzt werden.

Das folgende Foto in Abbildung 25.4 veranschaulicht das Gesagte mit einem Praxisbeispiel. Montiert wurde hier ein Patch-Panel (1 HE), darunter 1 HE Abstand gefolgt von einem Ethernet-Switch mit ebenfalls 1 HE. Befestigt sind beide 19-Zoll-Geräte durch jeweils vier Schrauben, die über Käfigmuttern mit den beiden Profilschienen verbunden wurden.

Abbildung 25.4 19-Zoll-Profilschienen und Käfigmuttern

25.4.1 Die 19-Zoll-Rack-Formate

19-Zoll-Racks können Sie in Bautiefen von 60, 80, 100 und 120 cm sowie in Baubreiten von 60, 70 oder 80 cm bekommen. Eine Breite von 60 cm reicht für die meisten Anwendungsfälle im Eigenheim aus, allerdings bieten breitere Racks seitlichen Zusatzraum für strukturierte Verkabelung und Stromversorgung. Sehr praktisch sind Modelle mit abnehmbaren Seitenteilen.

Beim Kauf eines 19-Zoll-Racks müssen Sie beachten, dass zwar die Höhe immer in HE angegeben wird (nutzbare Höhe für Einbaugeräte), die Breite und die Tiefe allerdings als Außenmaß in Zentimeter. Speziell die nutzbare Nettotiefe ist herstellerabhängig.

25.4.2 Die Auswahl des richtigen Racks

Als generelle Regel gilt: Versuchen Sie, das Rack so groß wie möglich zu bekommen, insbesondere was die Höhe betrifft. Sie werden feststellen, dass sich der Schrank schneller füllt, als Sie gerechnet hätten, und Sie werden dankbar für jede verfügbare HE sein. Optimal ist ein Schrank mit 42 HE und z. B. 60 × 80 cm (B × T). Speziell bei 19-Zoll-Servern kann jedoch eine größere Schranktiefe von z. B. 100 cm auf keinen Fall schaden.

Selbstverständlich ist ein derartiger »Monsterschrank« eine Herausforderung, was den Platzbedarf betrifft und auch preislich selten ein Schnäppchen, aber auf der anderen Seite ist eine aufgeräumte, flexible und erweiterbare Infrastruktur mit strukturierter Verkabelung/Vernetzung einer der wichtigsten Smart-Home-Bestandteile.

Sehen Sie sich bei den folgenden Herstellern die umfangreichen Produktpaletten an. Sie finden mit Sicherheit auch für Ihre persönliche Einbausituation das passende Modell.

- ► Rittal (www.Rittal.de)
- ► Triton (*www.triton-racks.de*)
- Digitus (www.digitus.info/produkte/professional-network/netzwerk-schraenke-undzubehoer)

Große Racks für kleines Geld

Wenn Sie etwas Geduld haben, sollten Sie sich z. B. bei eBay oder eBay-Kleinanzeigen auf die Lauer legen. Es empfiehlt sich eine E-Mail-Benachrichtigung für Angebote im näheren Umkreis. Wenn Sie eine Selbstabholung nicht scheuen, finden Sie oft genug wirklich hochwertige gebrauchte Racks (von z. B. Rittal) zu einem Spottpreis.

Empfehlen kann ich auch, auf spezielle Angebote für gebrauchte Netzwerkschränke zu achten, z. B. ist IT-Budget (*www.it-budget.de*) eine gute Anlaufstelle.

Sehr sinnvolle Ausstattungsmerkmale, an denen Sie sich orientieren können, sind:

- optionale Rollen (wenn Sie öfter hinter dem Rack hantieren)
- Sicherheitsglastür (empfehlenswert für die Optik) und wechselbarer Türanschlag, eventuell abschließbar
- ▶ abnehmbare Seitenwände und abnehmbare Rückwand, erleichtern die Montage sehr
- ► Kabeleinführungen in Schrankboden, -decke und auf der Rückseite
- ▶ Öffnungen für Belüftungseinheiten
- ► Gestell und Wände aus Stahlblech

25.4.3 Sinnvolles Rack-Zubehör

Was den Innenausbau Ihres 19-Zoll-Racks betrifft, können Sie z. B. bei Rittal und Triton auf einen gut bestückten Baukasten zurückgreifen:

- Montageplatten (z. B. f
 ür vertikale Aufnahme eines SAT-Receivers im hinteren Schrankbereich)
- zusätzliche Profilschienen (z. B. für den hinteren Bereich zur Aufnahme von Hutschienen oder 19-Zoll-Steckdosenleisten)
- Geräteböden jeglicher Art und Belastbarkeit (NAS-Geräte, Servergehäuse, Router, Verstärker, externe Festplatten)
- Innenbeleuchtung, 19-Zoll-Steckdosenleisten
- Wandbefestigungsmaterial
- unterschiedlichste aktive Belüftungselemente
- ▶ ausziehbare Fachböden und Schubladen, z. B. für Tastaturen
- Kabelführungssysteme und Bügel sowie Hutschienen
- ► Frontplatten, Blindplatten
- ▶ leere 19-Zoll-Einschubgehäuse für die Realisierung eigener Ideen
- ► Montagesätze (besorgen Sie sich am besten gleich mindestens 40 Käfigmuttern)
- ▶ Rollen, Nivellierfüße und Sockel

Ein Beispiel, wie Sie auch Stand-alone-Geräte wie z. B. NAS-Systeme, Router und einen Gira HomeServer aufgeräumt in ein 19-Zoll-Rack platzieren, finden Sie in unten stehender Abbildung 25.5. Verwendet wurden Fachböden, die sowohl an den vorderen als auch an den hinteren Profilschienen verschraubt sind.

Abbildung 25.5 19-Zoll-Fachböden, auch für schwere Lasten geeignet

25.4.4 Was kommt in das 19-Zoll-Rack?

Zwar können Sie versuchen, Netzwerkgeräte wie einen 24-Port-Switch oder einen Router sinnvoll in einen klassischen Verteilerschrank zu »quetschen«, viel besser eignet sich aber das 19-Zoll-Rack. Damit gelingt Ihnen die professionelle Installation von Netzwerkund Multimedia-Komponenten, insbesondere von:

- ► Patch-Panel(s) (z. B. 24 Ports, 1 HE)
- Ethernet-Switch(es) (ebenfalls 24 Ports, 1 HE) und gegebenenfalls PoE-Injektoren
- ▶ Rack-Server (je nach Modell z. B. zwischen 1 HE und 4 HE)
- Audioverstärker
- ► 35-mm-Hutschiene im hinteren Schrankbereich für z. B. KNX-REG-Geräte (USB-Anbindung von Homeserver) und Netzteile
- Geräte auf Fachböden (NAS, Router, Mini-Rechner, externe Festplatten)
- ► SAT-Receiver (auf Montageplatte im hinteren Schrankbereich)
- USV (unterbrechungsfreie Stromversorgung)

Kapitel 29 Messen mit Sensoren

Sensoren sind die Augen, Ohren und sogar die Nase Ihres Smart Homes. Benötigt werden Sensoren nicht nur zum Regeln und zum Überwachen, sondern auch zum besseren Verstehen von Vorgängen.

Die Welt der Sensoren ist extrem vielfältig. Es gibt sie in allen Größen, Bauformen, Genauigkeiten, Preiskategorien und mit unterschiedlichsten Schnittstellen. Fast alles lässt sich irgendwie messen, vieles davon ist im Privatbau mit moderner Gebäudesteuerung nicht nur sinnvoll und wichtig, sondern auch die Voraussetzung für intelligente Automatikfunktionen.

29.1 Tür- und Fensterkontakte

Tür- und Fensterkontakte werden meist als sogenannte *Reed-Kontakte* ausgeführt. Ein Reed-Kontakt (oder auch Reed-Schalter genannt) ist ein hermetisch dichter Schalter, der durch ein Magnetfeld betätigt wird. Unterschieden werden die Ausführungen als NC-(Normally Closed) und NO-Schalter (Normally Open). Mehr dazu lesen Sie in Abschnitt 6.3, »Schließer und Öffner«.

29.1.1 Die Anwendungsvielfalt von Fenster- und Türkontakten

Fenster- und Türkontakte gehören unbestritten zu den wichtigsten Sensoren im Smart Home, lassen sie sich doch für die unterschiedlichsten Anwendungen nutzen:

- 1. als einfache Fenster- oder Türüberwachung und daraus generierter Anzeige, z. B.:
 - Bei Verlassen des Hauses wird per roter LED, akustischer Ansage oder auch über ein blinkendes Deckenlicht an ein noch geöffnetes Fenster erinnert.
 - Eine LED-Anzeige neben dem Bett gibt Auskunft über vergessene Fenster (z. B. kombiniert mit einem Regensensor).
 - Abhängig von der gemessenen Außentemperatur und der verstrichenen Zeit wird an ein vergessenes Fenster nach dem Lüften erinnert.
- 2. für die Heizungs-, Lüftungs- und Klimasteuerung, z. B.:
 - Ein nur kurzzeitig geöffnetes Fenster (Stoßlüften) sollte auf die Heizungsregelung keinen Einfluss haben, bei einem tatsächlich vergessenen Fenster kann die Heiz-

29

leistung in diesem Raum jedoch heruntergefahren werden (Frostschutz), um keine unnötige Energie zu verbrauchen.

- Eine Wohnraumbelüftung kann dynamisch auf den Fensterstatus (offen, geschlossen) reagieren.
- Ein Abluftventilator (z. B. im WC) wird nur eingeschaltet, wenn das WC-Fenster geschlossen ist.
- 3. für die Jalousie- und Rollladensteuerung in Abhängigkeit vom Fensterstatus, z. B.:
 - Eine geöffnete Terrassentür unterbindet (sperrt) das automatische Herunterfahren der Jalousie, um ein versehentliches Ausschließen zu verhindern.
 - Bei einsetzendem Regen (Wetterstation) und geöffnetem Fenster wird dessen Außenjalousie automatisch geschlossen, um einem Wassereintritt so weit wie möglich entgegenzuwirken.
 - Die Lamellenposition einer Jalousie kann automatisch auf Mittelstellung (offen) gestellt werden, wenn das zugeordnete Fenster geöffnet wird (sinnvoll bei manueller Lüftung).
 - Ein innen liegendes Verdunklungsrollo darf nur heruntergelassen werden, wenn das dahinterliegende Fenster geschlossen ist.
- 4. als eine Art Mini-Alarmanlage (Achtung: keine versicherungstechnische Relevanz), z. B.:
 - Ein Öffnen von Fenstern oder T
 üren bei aktivierter Alarmfunktion f
 ührt zum Auslösen eines Alarms und der Abschreckungsfunktion f
 ür den Einbrecher (alle Lichter an, alle Jalousien hoch, akustische Unterst
 ützung).

29.1.2 Verschiedene Arten von Kontaktelementen

Die *Öffnungsüberwachung* besteht aus einem Kontaktelement und einem fest angebrachten Magneten. Dazu wird in den Fensterflügel ein Permanentmagnet eingebaut und in den Fensterrahmen ein Reed-Kontakt. Ist der Fensterflügel geschlossen, liegen Reed und Magnet direkt nebeneinander bzw. übereinander, das Fenster wird als geschlossen erkannt. Der Nachteil dieser Methode ist, dass auch ein nur zugedrückter Flügel (z. B. durch Wind) als geschlossen erkannt wird, obwohl der Fenstergriff in Drehstellung ist.

Bei der *Verschlussüberwachung* (oder auch *Griffüberwachung*) ist das Fenster mit einem Kontaktelement und einem Flügelbauteil mit beweglichem Magneten ausgerüstet, womit die tatsächliche Verriegelung des Fensters überwacht werden kann. Bei einer Drehung des Fenstergriffs bewegt sich der Magnet aus dem Schaltbereich des Kontaktelements.

Um auch zwischen geöffnetem und gekipptem Fenster unterscheiden zu können, bieten sich zwei Varianten an:

- 1. Bei der Öffnungsüberwachung benötigen Sie pro Flügel jeweils zwei Reed-Schalter und Magnete. Ein Pärchen wird oben im Fenster angebracht (Erkennung von gekippt), das zweite ganz unten (Erkennung von geöffnet).
- 2. Eine Kombination aus Verschlussüberwachung und einem zweiten Reed-Kontakt unten im Fenster erfüllt die Aufgabe ebenfalls.

Ein Beispiel (Tabelle 29.1) verdeutlicht die Kombinatorik am besten. Angenommen, das Fenster besitzt sowohl eine Verschlussüberwachung (im Griff) als auch eine Öffnungsüberwachung (unten am Fenster), so ergeben sich durch die beiden Reed-Schalter insgesamt vier Kombinationen:

Kontaktelement an Griff meldet	Kontaktelemtent an Fenster unten meldet	Resultat
offen (0)	offen (0)	Fenster ist in Drehstellung offen
offen (0)	geschlossen (1)	Fenster ist gekippt
geschlossen (1)	offen (0)	Fenster als offen interpretiert
geschlossen (1)	geschlossen (1)	Fenster ist geschlossen und verriegelt

Tabelle 29.1 Auswertung von Fensterkontakten

Je nach Anforderung lassen sich auch Fensterkontakte mit zusätzlichen Sicherheitsmerkmalen verbauen:

- Kontakte mit einem Sabotagekreis besitzen vier statt zwei Adern (gleich aussehend). Das erste Adernpaar ist für die eigentliche Unterscheidung zwischen geöffnet und geschlossen zuständig, das zweite Paar ist immer »geschlossen«, es sei denn, es wird durchgeschnitten oder anderweitig zerstört. Genau das wäre bei einer Sabotage der Fall und lässt sich wunderbar ebenfalls mit einem Binäreingang abfragen.
- ► Eine Fremdfeldüberwachung erkennt, ob durch ein von außen angelegtes fremdes Magnetfeld der Reed-Kontakt manipuliert bzw. die Alarmanlage getäuscht werden soll. Hierzu werden Magnetschalter mit zwei Kontakten eingesetzt, einer für die Verschluss- bzw. Öffnungsüberwachung und ein zweiter, der sich immer dann öffnet, wenn ein Fremdmagnetfeld angelegt ist.
- Magnetschalter mit Doppelkontakt sind dazu gedacht, die Haussteuerung konsequent von der Alarmüberwachung zu trennen.

Auf den Herstellerseiten von z. B. Maco (*www.maco.de*) und Roto (*www.roto-frank.com*) finden Sie für fast jeden Anwendungsfall die passenden Beschläge. Einzelne Reed-Kontakte für Fenster und Türen bieten fast alle Hersteller von Sicherheitstechnik, Beispiele sind Abus (*www.abus.com*), Gira (*www.gira.de*, Abbildung 29.1) und ABB (*www.abb.de*). In Abbildung 29.1 erkennen Sie gut den Reed-Schalter mit dem Signalkabel und den dazu passenden Permanentmagneten:

Abbildung 29.1 Beispiel für einen Reed-Kontakt (Gira)

Eingebaut in ein Holz-Alu-Fenster (Abbildung 29.2), sehen Sie von dem Magneten im Flügel 2 fast nichts mehr, genauso wenig wie vom Reed-Schalter, der im Fensterrahmen montiert ist **①**.

Abbildung 29.2 Reed-Schalter in Fensterrahmen und Flügel montiert

Tipp: Magnetkontakte bei neuen Fenstern

Falls Sie in der Planungsphase für neue Fenster bzw. für ein ganzes Haus sein sollten, lohnt es sich, in jedem Fall mit dem Fensterbauer Ihrer Wahl zu sprechen. Oft lassen diese sich überreden, in Flügel und Rahmen Magnetkontakte gleich mit einzubauen, die Sie selbst besorgt haben und dem Fensterbauer zukommen lassen. Für relativ wenig Geld bekommen Sie auf diese Art professionell eingebohrte Kontakte.

29.1.3 Anschlussbeispiel für Fensterkontakte

Reed-Kontakte für Fenster oder Türen mit oder ohne Sabotageleitung verbinden Sie ganz einfach mit einem KNX-Binäreingang (als REG-Modul oder Unterputzversion, siehe dazu Kapitel 31, »Zustände erfassen durch Eingänge«) und bringen so Ihre Öffnungsüberwachung auf den KNX-Bus (Abbildung 29.3).

29

Abbildung 29.3 Anschluss eines Reed-Kontakts über Binäreingang

Auf Kanal 1 des Binäreingangs erkennen Sie, ob das Fenster geöffnet oder geschlossen ist. Den Sabotagekontakt, falls vorhanden, legen Sie optional auf einen zweiten Eingang. Im Normalzustand ist dieser immer geschlossen. Erkennt der Binäreingang einen offenen Kontakt, können Sie von einem Kabelbruch (z. B. Sabotage) ausgehen.

Achten Sie bei der Abfragespannung des verwendeten Binäreingangs auf einen kleinen Wert möglichst unterhalb 5 V (Lichtbogengrenze). Im Abschnitt über Unterputzbinäreingänge (siehe Abschnitt 31.3, »Unterputzbinäreingang«) finden Sie ein Modell mit besonders niedriger Abfragespannung. Höhere Schaltspannungen können eine Materialwanderung auf der Kontaktoberfläche begünstigen. Reed-Kontakte, die explizit eine hohe Schaltspannung erlauben, sind zu bevorzugen.

29.2 Bewegungsmelder

Ein *Bewegungsmelder* ist, vereinfacht gesagt, ein elektronischer Sensor, der Bewegungen in seiner näheren Umgebung erkennt und daraufhin eine Reaktion (z. B. eine Schalthandlung) auslösen kann. Haupteinsatzgebiete sind die automatische Beleuchtungssteuerung sowie die Alarmauslösung.

Der Bewegungsmelder (BWM) arbeitet nach einem der folgenden Verfahren oder einer Kombination daraus (Dual-Melder):

- 1. Radar (nach dem Dopplerradarprinzip)
- 2. Ultraschall
- 3. Passivinfrarot

Bewegungsmelder nach dem *PIR*-Prinzip (englisch: Passive Infrared) sind die am häufigsten eingesetzten Typen, sie bestehen aus einem Empfänger mit Linsenaufsatz sowie der passenden Auswertelektronik und verarbeiten die vorhandene Umgebungsstrahlung zur Erkennung von Bewegungen. Die meisten Modelle sind sowohl in der Empfindlichkeit als auch in der Helligkeitsschwelle, unterhalb von der sie aktiviert werden sollen, einstellbar. Durch spezielle Vorsatzblenden kann ein Teil der Sichtsektoren abgedeckt und somit das Erfassungsfeld beschränkt werden. Diese Art Blenden wirken bei häufigen Fehlalarmen oder einer gewünschten Reduktion der Erfassung auf einen bestimmten Bereich wahre Wunder.

29.2.1 Bauarten von PIR-Bewegungsmeldern

Je nach Einsatzgebiet bieten sich verschiedene Bauarten von Meldern an. Zunächst wird unterschieden, ob eine Installation im

- ► Innenbereich
- oder im Außenbereich (IP-Schutzklasse beachten, siehe Abschnitt 5.4, »Die IP-Schutzarten«)

anvisiert ist. Für beide Bereiche hängt die Wahl des Melders von dessen geplanter Einbauhöhe ab, man unterscheidet zwischen

- Deckenmontage,
- ► Wandmontage in 1,10 m Höhe und
- ▶ Wandmontage in 2,20 m Höhe.

Zu guter Letzt ist die Wahl des Interface ein wichtiges Kriterium. Sie haben die Wahl zwischen

- ▶ klassischem Melder mit 230-V-Betrieb,
- Melder mit KNX-Busankoppler und
- ► Melder mit DALI-Interface.

Im Innenbereich haben Sie mit einem KNX-Gerät die größten Vorteile. Allein die direkte Parametrierung über die ETS und die einfache flexible Verkabelung (nur Busanschluss notwendig) sprechen für sich. Im Außenbereich gilt das prinzipiell auch, leider ist aber die Produktvielfalt von KNX-Geräten mit höheren IP-Klassen (noch) nicht riesig. Ein weiterer Grund dafür, dass auch 230-V-Melder durchaus ihre Berechtigung im Außenbereich haben, ist das »ungute Gefühl«, eine KNX-Busleitung nach außen zu führen (siehe dazu auch Abschnitt 24.3, »Die Sicherheit von KNX«).

29.2.2 Anschluss eines KNX-Bewegungsmelders

Ein Beispiel für eine KNX-basierte Lichtsteuerung über einen KNX-Bewegungsmelder finden Sie in Abbildung 29.4. Sie erkennen in dieser kleinen Schaltung sehr gut, dass es keine direkte Verbindung des Bewegungsmelders mit der zu schaltenden Leuchte gibt, die beiden Geräte sind sozusagen entkoppelt.

Abbildung 29.4 Anschluss eines KNX-Bewegungsmelders

Im einfachsten Fall erzeugt der Melder ein KNX-Telegramm, wenn er eine Bewegung erkannt hat. Der Aktor empfängt dieses und schaltet die Beleuchtung an.

Der große Vorteil ist aber die Flexibilität, denn zwischen dem Telegramm »Bewegung erkannt« und der Schalthandlung des Aktors können beliebige Logiken und Verknüpfungen eingefügt werden. Beispiele hierfür:

- ► Kein Licht, wenn nachts das Fenster geöffnet ist Stechmückengefahr!
- ▶ Kein Licht, wenn im Nebenzimmer das Kind schläft.
- > Zusätzlich zur Lichtansteuerung werden noch die Jalousien bei Nacht geschlossen.

29.2.3 Anschluss eines konventionellen Bewegungsmelders

Natürlich können Sie, wie in Abbildung 29.5, auch einen 230-V-Melder busfähig machen, indem Sie ihn mit einem KNX-Binäreingang (230 V) abfragen (vieradrige Leitung zum Bewegungsmelder vorsehen). Den Komfort eines echten KNX-Melders erreichen Sie dadurch aber nicht vollständig (keine Parametrierung des Melders über die ETS).

Abbildung 29.5 Anschluss eines konventionellen Bewegungsmelders

Der konventionelle Melder wird also so weit »um-verdrahtet«, dass sein Schaltausgang statt mit der Beleuchtung jetzt mit einem freien Kanal eines Binäreingangs verbunden

wird. Die im vorherigen Abschnitt beschriebene Entkopplung erreichen Sie demnach auch mit diesem Aufbau.

Es gibt jedoch eine kleine Einschränkung: Der vorgestellte Anschluss funktioniert nur problemlos, wenn der Melder seinen Ausgang per Relais schaltet. Ist stattdessen ein Triac (Zweirichtungs-Thyristortriode) eingebaut, benötigen Sie zusätzlich eine Mindestlast (z. B. eine Leuchte).

29.2.4 Beispiel für einen KNX-Bewegungsmelder im Innenbereich

Melder für den Innenbereich bekommen Sie problemlos für alle gängigen Schalterprogramme und Farben der bekannten Hersteller. Exemplarisch möchte ich Ihnen ein KNX-Modell von Gira (Abbildung 29.6) vorstellen, das als Standardmodell (Preis: ca. 70 \in) und Komfortmodell (Preis: ca. 102 \in) jeweils als Variante für einen normal hohen Einbau (1,10 m) und hohe Einbauzonen (2,20 m) erhältlich ist. Zusätzlich benötigen Sie für beide einen UP-Busankoppler vom Typ 570 00 (Preis: ca. 70 \in).

Abbildung 29.6 Gira-KNX-Automatikschalter 130528 im Doppelrahmen mit einem KNX-Taster

Die Reichweite für die Installation auf Normalhöhe (1,10 m) beträgt 10 m frontal auf die Linse sowie jeweils 6 m zu beiden Seiten. Der Erfassungsbereich (Abbildung 29.7) ist 180°. Wie immer wird die optimale Reichweite erreicht, wenn der Sensor seitlich zur Gehrichtung angebracht wird.

Abbildung 29.7 Erfassungsbereich des Gira-BWM

Der Melder wird komplett über die ETS parametriert (Abbildung 29.8), die möglichen Einstellungen sind überschaubar. Die wichtigsten für die Komfortversion des Melders sind:

- Einstellung des Dämmerungswerts, ab dem Bewegungen erfasst werden
- bei erkannter Bewegung können mehrere Telegrammtypen erzeugt werden: Schalten, Wertgeber, Lichtszene
- ▶ Betriebsarten: Beleuchtungsbetrieb oder Meldebetrieb, umschaltbar
- ► Modus Einzelgerät, Hauptstelle und Nebenstelle wählbar
- Gehtestfunktion
- Alarmmeldung bei Abziehen des Geräts möglich (Tamper-Schalter oder Sabotagekontakt)

Gerät: 1.1.185 Bewegungsmelder Windfa	ang Automatik-Schalter Komfort 1,10m UP	
Allgemein Auswertung einer Erfassung	Applikationstyp	Einzelgerät 🔹
Ende der Erfassung Sperrfunktion	Betriebsart	Schalten Beleuchtungsbetrieb
Meldebetrieb Alarmfunktion	Status-LED immer aus ?	NEIN
Busspannungswiederkehr	Gehtest aktivierbar?	NEIN
	Linsenfarbe	helle Linse 🗸
	Dämmerungsstufen- Potentiometer	gesperrt •
	Potentiometer "zusätzliche Sendeverzögerung"	gesperrt 🔹
	Schiebeschalter-Funktion	Schiebeschalter: 1/AUTO/0
Kommunikationsobjekte / Parameter	/ Inbetriebnahme /	

29.2.5 Beispiel für einen KNX-Bewegungsmelder im Außenbereich

Wie bereits erwähnt, sind KNX-Melder für den Außenbereich ein wenig seltener. Fündig werden Sie aber bei z. B. Merten, ABB, Siemens oder B.E.G.

Das Modell KNX Argus 220 von Merten (*www.merten.de*, Preis: ca. 170 €) ist ein gutes Beispiel für einen soliden und optisch ansprechenden Außenmelder in der Schutzart IP55. Abbildung 29.9 zeigt den Argus in eingebautem Zustand (rechts) und ohne seine Abdeckung (links). Den kugelförmigen Sensorkopf ④ können Sie in einem gewissen Umfang feinjustieren, sodass der Melder den zu überwachenden Bereich optimal ausleuchtet. Um den IP55-Anforderungen gerecht zu werden, besitzt der Argus keinen Programmiertaster, sondern einen speziellen Kontakt ④, der über einen Magneten geschaltet wird. Die Programmier-LED ④ ist ebenfalls geschützt ausgeführt.

Abbildung 29.9 KNX-BWM für den Außenbereich (Merten KNX Argus 220)

Des Weiteren befinden sich drei Potentiometer ① unter der Abdeckung, mit denen Sie die Empfindlichkeit, die Helligkeitsschwelle und die Zeit einstellen, die der Melder von der letzten erkannten Bewegung bis zum Ausschalten (der Beleuchtung) warten soll. Bereits an dieser Stelle beweist der Argus 220 (Abbildung 29.10) einen der Vorteile von echten KNX-Bewegungsmeldern. Die drei Einstellparameter können Sie nämlich auch ganz bequem, ohne Leiter und Schraubendreher, über die ETS justieren. Die Applikation bietet dazu für jeden Parameter eine Umschaltmöglichkeit zwischen Potentiometerwert und ETS-Wert.

Gerät: 1.1.187 Aussenbewegungsmelder	Reichweit KNX ARGUS 220	
Allgemein Block Konfiguration	Erweiterte Einstellungen	freigegeben 🗸
Block 1 Allgemein Bewegsensor	Totzeit Bewegungsanfang	freigegeben 🔹
Helligkeit	Zeitbasis	1 min 👻
l elegramme Ausgang Schalt-/Wertobjekt 1	Zeitfaktor (1-255)	3
Zeiten Block 2 Allgemein	Empfindlichkeit	niedrig 🗸
Bewegsensor Helligkeit	Reichweite einstellbar	über Parameter 🔹
Telegramme Ausgang Schalt-/Wertobjekt 1	Reichweite bei Download überschreiben	freigegeben 🔹
Zeiten	Reichweite	10% 🔹
	Reichweite über Objekt ändern	freigegeben 🔹

Die Reichweite, die Helligkeitsschwelle oder auch die Treppenlichtzeit können Sie zusätzlich sogar per KNX-Telegramm verändern. Mehr Flexibilität geht kaum. Ebenfalls vorbildlich gelöst sind die maximal fünf getrennt parametrierbaren Bewegungsblöcke. Jeder Bewegungsblock besitzt einen eigenen Schaltausgang in Form eines Kommunikationsobjekts. Nützlich sind die getrennten Blöcke z. B. dann, wenn Sie die helligkeitsunabhängige Anwesenheit einer Person erfassen und getrennt davon (helligkeitsabhängig) die Außenbeleuchtung schalten möchten.

Mit seinem breiten Erfassungswinkel von 220° und maximal 16 m Reichweite ist der KNX Argus 220 auch für größere Häuserfronten geeignet. Die 220°-Zone lässt sich bei geeigneter Montage auch mit einer Rundum-360°-Zone (Radius 4 m) kombinieren. Geeignet ist der Argus für Decken- und Wandmontage, sogar an ortsfesten Rohren. Eine Mindesthöhe von 1,70 m sollte nicht unterschritten werden, optimal sind 2,50 m. Durch vier mitgelieferte einsetzbare Abdunklungssegmente können Sie unerwünschte Zonen und Störquellen aus dem Erfassungsbereich ausblenden. Die angegebene Reichweite von 16 m hat der Argus in meiner Testinstallation souverän erreicht. In der Praxis reduzieren Sie die Empfindlichkeit vermutlich, es sei denn, Ihr Smart Home hat residenzartige Dimensionen.

29.2.6 Die richtige Platzierung von PIR-Bewegungsmeldern

PIR-Melder reagieren optimal, wenn die zu erfassende Person am Sensor vorbeigeht, wohingegen ein Sensor nach dem Dopplerprinzip am besten Abstandsänderungen erkennen kann (Person geht frontal auf den Melder zu).

Achten Sie bei der Installation darauf, dass der Melder nicht auf Heizkörper oder Fenster gerichtet ist. Die Wärmeänderungen des Heizkörpers können ebenso zu Fehlauslösungen führen wie der plötzliche Sonnenlichteinfall durch ein Fenster. Wichtig für die Planung ist auch, zu wissen, dass eine Person, die hinter einer Scheibe an einem PIR-Bewegungsmelder vorbeigeht, nicht erkannt wird (Duschkabinen, Glastrennwände).

Ein gut platzierter Melder erfasst ausschließlich den Raum, den er erfassen soll, und nicht zusätzlich einen Nebenraum oder angrenzenden Flur, es sei denn, das wäre explizit erwünscht.

Ein typisches Beispiel für gut platzierte und eher »mäßig« platzierte Wandbewegungsmelder verdeutlicht Abbildung 29.11.

Abbildung 29.11 Bewegungsmelder gut und schlecht platziert

Abdunklungssegmente können zwar helfen, sollten aber immer nur die zweite Priorität nach der durchdachten Planung als oberstes Ziel sein. Besonders im Außenbereich sollten Sie beachten, dass die Empfindlichkeit eines Bewegungsmelders bei Kälte und Regen sinkt (die Kleidung schottet die Körperwärmestrahlung ab).

PIR-Bewegungsmelder erkennen keine Bewegung!

Der klassische PIR-Melder ist im eigentlichen Sinne gar kein Bewegungsmelder, denn er erkennt nicht die eigentliche Bewegung selbst, sondern eine Veränderung der Temperaturen seiner pyroelektrischen Kristalle auf der Empfängerfläche. Durch dieses Funktionsprinzip können nur relativ plötzliche Temperaturschwankungen erkannt werden, jedoch keine sehr langsamen Bewegungen durch den Abtastbereich des Melders. Ein Hindurchschleichen ohne Erkennung ist durchaus möglich (isolierende Kleidung, Hände und Gesicht abgedeckt).

Für eher sensiblere Einsatzgebiete werden daher auch aktive Bewegungsmelder eingesetzt, die im Gegensatz zu PIR-Meldern (also den passiven Geräten) selbst Strahlung aussenden und daher auch minimale Bewegungen sicher erfassen. Eine Überlistung ist bei aktiven Geräten signifikant schwieriger.

29.3 Präsenzmelder

Ein *Präsenzmelder* (PM) arbeitet, vergleichbar mit dem Bewegungsmelder (siehe vorheriger Abschnitt), nach dem PIR-Prinzip (Passiv Infrared). Er registriert Wärmestrahlung in seinem Erfassungsbereich und wandelt sie in ein messbares, elektrisches Signal. Eine wie auch immer geartete Schaltaktion kann daraufhin erfolgen (z. B. Licht an).

Wie auch bei den Bewegungsmeldern können Sie sich bei der Planung von Präsenzmeldern sowohl für eine konventionelle Variante als auch für ein Modell mit direktem KNX-Busanschluss entscheiden. Letzteren sollten Sie, wenn immer es anschlusstechnisch möglich ist, auf jeden Fall bevorzugen. Im Abschnitt über Bewegungsmelder (siehe Abschnitt 29.2.3, »Anschluss eines konventionellen Bewegungsmelders«) erfahren Sie dennoch, wie Sie eine Busanbindung auch mit herkömmlichen Präsenzmeldern erreichen.

29.3.1 Funktionalitäten von Präsenzmeldern

Präsenzmelder sind recht intelligente Geräte, die weit mehr leisten, als nur Bewegung zu erkennen. Der Funktionsumfang ist bei den meisten Geräten relativ ähnlich, ich möchte Ihnen an dieser Stelle die wichtigsten Merkmale vorstellen:

 PM können Licht nicht nur schalten, sondern auch dimmen, und per Mischlichtmessung dafür sorgen, dass die Summe von Tages- und Kunstlicht einen Raum optimal ausleuchtet.

Kapitel 33 Welten verbinden mit Gateways

Mit einem Gateway erweitern Sie Ihren KNX-Bus über seine Systemgrenzen hinaus, erschließen sich neue Welten und damit neue spannende Anwendungen.

Alle KNX-Gateways haben gemein, dass sie neben der KNX-Schnittstelle, mindestens eine weitere Schnittstelle zur Verfügung stellen. Zwischen diesen beiden Schnittstellen vermittelt das Gateway Telegramme in beide Richtungen, verbindet also einen Bus mit einem anderen.

33.1 DALI-Gateway

Ein *KNX-DALI-Gateway* bildet die Schnittstelle zwischen einem KNX-System und einer DALI-Beleuchtungsanlage und vernetzt so zwei der bedeutendsten Standards zur Gebäudesteuerung miteinander.

Das DALI-Gateway tritt dabei sowohl als DALI-Master als auch als Spannungsversorgung für elektrische DALI-Vorschaltgeräte (Slaves) auf, stellt also die DALI-Systemspannung zur Verfügung. Aus diesem Grund ist es weder notwendig noch zulässig, parallel zum Gateway eine weitere DALI-Spannungsversorgung in die Installation einzufügen. Ebenso benötigen Sie keine weiteren DALI-Zentralen oder DALI-Master. Ein DALI-Betriebsgerät, wie z. B. ein DALI-EVG, arbeitet als Befehlsempfänger, der nur bei Anfrage Zustände oder Statusmeldungen an den Master zurücksendet.

Es ist die alleinige Aufgabe des Gateways, über KNX empfangene Telegramme in Steuerbefehle auf die DALI-Leitung umzusetzen und die angeschlossenen Betriebsgeräte zu kontrollieren. Dabei erfolgt die Kommunikation zwischen KNX-System und DALI-Schnittstelle bidirektional. Typische Telegramme, die ausgetauscht werden, sind z. B.:

- ► KNX → DALI: Steuerbefehle, die den Helligkeitszustand von Leuchten oder Leuchtengruppen verändern – schalten, dimmen, Szenen abrufen, Helligkeitswertvorgabe, Effekte abrufen –, sowie diverse Sperrfunktionen, Zeitfunktionen (z. B. Treppenhauslicht) oder Zwangsführungen
- ► DALI → KNX: die vom Gateway ermittelten Helligkeitszustände der Betriebsgeräte und Statusinformationen von Betriebsgeräten (Lampenfehler, EVG-Fehler usw.) bzw. des Gateways selbst (Spannungsausfall, Notbetrieb, Kurzschluss auf DALI-Bus usw.)

Ein wenig lässt sich die Art und Weise, wie ein einzelnes DALI-Betriebsgerät angesprochen wird, mit einem Aktorkanal eines klassischen KNX-Dimmaktors vergleichen. Sie können sich also die Arbeit mit einem DALI-Gateway in etwa so vorstellen wie mit einem ziemlich breiten 64-Kanal-KNX-Dimmaktor (den es natürlich so nicht gibt).

33.1.1 Die Teilnehmeradressierung

In der Regel bieten DALI-Gateways mehrere Arten der Teilnehmeradressierung, also der Methode, wie einzelne oder mehrere DALI-Betriebsgeräte angesprochen werden können:

- Zentralsteuerung: Alle angeschlossenen DALI-Komponenten werden durch einen Broadcast-Befehl angesteuert. Das Schalten von einzelnen Leuchten ist in diesem Modus nicht möglich, dafür entfällt aber die DALI-Inbetriebnahme.
- ► **Gruppensteuerung**: Während der DALI-Inbetriebnahme werden die maximal 64 DALI-Betriebsgeräte beliebig verschiedenen Gruppen des Gateways zugeordnet, die das Gateway anschließend gemeinsam ansprechen kann.
- Gerätesteuerung: Diese, individuellste, Adressierungsart erlaubt das gezielte Ansprechen von bis zu 64 Einzelgeräten. Ein einzelnes Betriebsgerät lässt sich über ein zugeordnetes KNX-Kommunikationsobjekt so ansprechen, als wäre es Teilnehmer am KNX-System selbst.

Manche KNX-DALI-Gateways, z. B. das in Tabelle 33.1 aufgeführte Modell von Gira, bieten auch Kombinationen aus diesen Adressierungsmethoden.

Wie muss man sich die Vergabe von DALI-Adressen beim Einsatz eines DALI-Gateways vorstellen? Das von ABB hergestellte DG/S 1.1 geht beispielsweise so vor, dass es alle (neu gefundenen) DALI-Teilnehmer in ungeordneter Reihenfolge aufsteigend auf dem KNX abbildet. Jeder Teilnehmer ist danach direkt über zugeordnete KNX-Kommunikationsobjekte ansprechbar. Falls eine Umadressierung gewünscht ist, kommt ein separates Tool zum Einsatz. In der ETS-Software werden alle Kommunikationsobjekte in gewohnter Art und Weise mit Gruppenadressen verknüpft und die Parameter des Gateways eingestellt. Die Parameter sind teils spezifisch für jeden DALI-Teilnehmer oder aber global für das gesamte Gateway.

33.1.2 Produktbeispiele: KNX-DALI-Gateways

Ich möchte Ihnen in nachfolgender Tabelle 33.1 drei gern eingesetzte KNX-DALI-Gateways gegenüberstellen. Jedes davon ist gut für den Einsatz im Privatbau geeignet. Weitere gängige Modelle stammen z. B. von Merten (MEG6725-0001) oder Siemens (KNX-DALI-Gateway Twin N 141/31).

Merkmal	ABB DG/S 1.1	IPAS KNX DaliControl e64	Gira KNX DALI Gateway Plus 2180 00
Preis	ca. 330 €	ca. 665€	ca. 345 €
Breite	4 TE	4 TE	4 TE
EVGs (max.)	Kanal A: 64 EVGs (Einzelzugriff) Kanal B: 64 Teilneh- mer, gruppiert	64 EVGs (Einzel- zugriff) 16 Gruppen	64 EVGs (Einzel- zugriff) 32 Gruppen
Lichtszenen	15	16	16
Effektmodul	-	Effektmodul, 16 Programme mit bis zu 500 Schritten	16 Effekte mit jeweils 16 Effekt- schritten
Besonderheiten	Dynamikbetrieb (z. B. Treppenlicht- modus), Einbrennfunktion	Betriebsdatenfas- sung der Leuchten, Treppenlichtmo- dus, Notlicht mit Testbetrieb, Panik- betrieb, Tag/Nacht, Statistikfunktion, Einbrennfunktion	Betriebsstunden- zähler, Treppen- lichtmodus, Korridorfunktion, Notlichtfunktion mit Testbetrieb, Unterstützung von Stand-by-Schal- tung für DALI-EVGs
Fehlererkennung	EVG und Lampen- fehler über KNX melden	EVG und Lampen- fehler über KNX melden	EVG und Lampen- fehler über KNX melden
Integration	ETS-Parametrie- rung, ohne Plug-in, einfaches Inbe- triebnahmetool	ETS-Parametrie- rung, mit Plug-in (inklusive Inbe- triebnahme), integrierter Web- server mit Visuali- sierung, Konfiguration, Steuerung, RJ-45, 100 MBit/s	ETS-Parametrie- rung, mit Plug-in (inklusive Inbe- triebnahme und Testfunktion), Handbetriebsteue- rung

Tabelle 33.1 Produktbeispiele: KNX-DALI-Gateways

Merkmal	ABB DG/S 1.1	IPAS KNX DaliControl e64	Gira KNX DALI Gateway Plus 2180 00
Bedienelemente	1 LED, 1 Taste (Prü- fung DALI-Aus- gänge)	Display, 3 LEDs, 3 Taster, zur Inbe- triebnahme und Parametrierung	4 Drucktasten, 3 Status-LEDs, eine 7- Segment-Anzeige
Leistungsauf- nahme	max. 12,5 W	7 W	max. 6 W

Tabelle 33.1 Produktbeispiele: KNX-DALI-Gateways (Forts.)

Zu teuer?

Das IPAS-Gateway überzeugt mit tollen Features, was man auch an dem gehobenen Preis ablesen kann. Doch es geht auch günstiger: Vom Hersteller MDT bekommen Sie ein nahezu identisches Gerät für ca. 380 €. Das MDT-Gateway nennt sich SCN-DALI64.02.

33.1.3 Ein Wort zur Übertragungsgeschwindigkeit

Der DALI-Bus überträgt Informationen mit gemächlichen 1.200 Bit/s, KNX hingegen mit 9.600 Bit/s. Bedingt durch die langsamere Übertragungsgeschwindigkeit kommt es bei KNX-Telegrammen mit mehr als sieben dadurch adressierten DALI-Teilnehmern zu einer spürbaren Verzögerung beim Ein- und Ausschalten. Ein KNX-Telegramm kann zudem bis zu 64 einzelne DALI-Telegramme auslösen, die nacheinander vom Gateway über die DALI-Steuerleitung gesendet bzw. gequetscht werden. Ebenso spielen die Einflüsse der Leuchtmittel und EVGs bei der Abfrage von Statuswerten eine zeitliche Rolle. In der Praxis macht sich diese Verzögerungen z. B. dahin gehend bemerkbar, dass zwischen dem Einschalten einer DALI-Leuchte und der daraufhin vom Gateway gesendeten Statusinformation (Leuchte ist an) schon einige Sekunden vergehen können. Wirklich störend ist das allerdings nicht, denn die eigentliche Aktion, nämlich das Schalten oder Dimmen der Leuchte, findet quasi unmittelbar statt.

Sie können sich jedoch bestimmt vorstellen, dass schnelle Farbübergänge bei RGB-LEDs und synchronisierte Beleuchtungseffekte in Echtzeit mit DALI kaum möglich sind. Die Situation verbessert sich, wenn Sie ein Gateway mit eingebautem Effektmodul verwenden (siehe Tabelle 33.1). Wirklich bühnenreif bekommen Sie Ihre Lichteffekte allerdings erst mit DMX.

Bitte beachten Sie

Da bei der Installation eines DALI-Gateways gleich mehrere unterschiedliche Spannungsbereiche beteiligt sind, ist eine wichtige Vorschrift unbedingt zu beachten: Die DALI-Systemspannung ist Funktionskleinspannung (FELV). Aus diesem Grund ist die DALI-Schnittstelle wie eine netzspannungsführende Leitung gemäß den gültigen Installationsvorschriften zu behandeln.

33.1.4 Das Gira KNX DALI Gateway Plus

Im Gira KNX DALI Gateway Plus 2180 00 (siehe Abbildung 33.1) finden Sie die komplette Ausstattung, die Sie für eine leistungsfähige Beleuchtungssteuerung über den DALI-Bus benötigen.

Abbildung 33.1 Das Gira-DALI-Gateway 2180 00

Wie vollgepackt mit Funktionen das Gira-Gerät ist, lässt bereits das 288 Seiten starke Handbuch erahnen. Bis zu 64 Leuchten in maximal 32 Gruppen sind über ein einzelnes Gerät ansteuerbar. Die Adressierung ist überaus flexibel. Insgesamt sechs Adressierungsarten, wie z. B. Einzel-, Gruppen- und Broadcast-Adressierung, sowie ein Handbetrieb stehen zur Verfügung. Wie bei DALI üblich, kann die Gruppenzuordnung einzelner Leuchten unabhängig von der tatsächlichen Verkabelung vorgenommen werden.

Standard- und Spezialfunktionen

Neben Standardfunktionen wie Szenensteuerung (bis zu 16 Lichtszenen), parametrierbarem Dimmverhalten, diversen Zeitfunktionen, Fehlerrückmeldungen (inklusive Kurzschluss und Spannungsausfall), Sammelrückmeldung sowie Sperrfunktionen und Helligkeitsgrenzwerten bietet das DALI Gateway Plus einige Besonderheiten:

- Eine eingebaute Effektsteuerung zur Umsetzung dynamischer Lichtstimmungen (16 Effekte mit je bis zu 16 Schritten).
- ► Die Treppenhausfunktion kann mit reduzierter Helligkeit vorwarnen.
- ► Alle kanalorientierten Funktionen lassen sich auch für jede Gruppe parametrieren.
- Ein Betriebsstundenzähler (vorwärts oder rückwärts) unterstützt bei Wartungsaufgaben.
- ► Der DALI-Power-ON-Level und der System-Failure-Level sind einstellbar.
- Der Betrieb von Notleuchten wird umfangreich unterstützt.
- ► Die optionale Prüfung von DALI-Gerätetypen während der Zuordnung verhindert Funktionsinkompatibilitäten (z. B. nach dem Austausch eines Betriebsgeräts).
- Ein ebenfalls zuschaltbarer Kompatibilitätsmodus erlaubt auch die Steuerung von Betriebsgeräten, die sich nicht vollständig an die DALI-Spezifikation halten.
- Einzelne Leuchten können Sie im laufenden Betrieb austauschen, wobei die Ersatzleuchte im System automatisch die Position der ausgetauschten Leuchte einnimmt.
- Zur Vermeidung von Stand-by-Verlusten unterstützt das Gateway über einen zusätzlichen KNX-Schaltaktor die Netzspannungsabschaltung der DALI-Teilnehmer (dazu mehr am Ende dieses Abschnitts).

Das starke ETS-Plug-in unterstützt Sie bei der Inbetriebnahme

Konfiguriert wird das Gira 2180 00 über ein intuitives ETS-Plug-in, zusätzliche Software wird nicht benötigt, auch nicht für die Zuordnung der gefundenen DALI-Betriebsgeräte. Das Plug-in erlaubt sogar eine teilweise Offline-DALI-Konfiguration. Über das Plug-in (siehe Abbildung 33.2) lösen Sie ebenfalls die Testfunktionen für Einzelgeräte oder ganze DALI-Gruppen aus. Die Testmöglichkeiten sind nicht auf einfaches Ein- und Ausschalten beschränkt, sondern umfassen ebenso Gruppentests, zentrales Schalten, Dimmen und sogar die Prüfung von Szenen und Effekten.

Abbildung 33.2 DALI-Testbetrieb im Gira-ETS-Plug-in

Weiterhin können Sie Parametrierungsvorlagen im XML-Format importieren und exportieren.

Handbetrieb am Gateway

Das DALI Gateway Plus besitzt eine 7-Segment-Anzeige, die Sie bei der Steuerung von Betriebsgeräten im Handbetrieb unterstützt. Außerdem stellt sie Gerätezustände (z. B. Initialisierungsphase) und Fehler (z. B. Anschluss, Gerätetausch) dar. Die Bedienung am Gerät nehmen Sie über vier Drucktaster vor.

Die Sache mit der Stand-by-Abschaltung

Das Gira-DALI-Gateway (nur in der Plus-Version) bietet eine Funktion zur globalen Rückmeldung der Schaltstatus aller projektierten DALI-Betriebsgeräte, die in Verbindung mit einem KNX-Schaltaktor zur Stand-by-Abschaltung der DALI-Anlage und damit zur Energieeinsparung verwendet werden kann. Das Anschlussschema mit Gruppenadresse zur Ansteuerung des Schaltaktors sehen Sie in Abbildung 33.3.

Abbildung 33.3 Anschlussschemata zur DALI-Stand-by-Abschaltung

33.2 DMX-Gateway

Um es gleich vorwegzunehmen: Leider ist DMX nicht so unproblematisch in der KNX-Anbindung wie z. B. DALI. Der Markt bietet zwar eine Handvoll Gateways, die prinzipiell gut funktionieren, teilweise aber die unangenehme Eigenschaft haben, keine DMX-Statuswerte wieder auf den KNX-Bus zurückübertragen zu können. Die folgende Tabelle 33.2 soll Ihnen die wichtigsten *KNX-DMX-Gateway*-Lösungen aufzeigen und als zusätzliche Variante auch eine DALI-DMX-Schnittstelle vorstellen (letzte Zeile).

Produkt	Eigenschaften	Preis
arcus-eds KNX-GW-DMX (www.arcus-eds.de/dmx.html)	 Parametrierung erfolgt über den DMX-Konfigurator nur unidirektional eingebauter Sequenzer kann nur eine Sequenz zur gleichen Zeit nutzen 	ca. 310 €
BabTec DUODMX 12110 KNXnet/ IP SR (www.bab-tec.de)	 2 DMX-Ausgänge mit je 512 Kanälen Deckeneinbau und Hutschienenmon- tage Konfiguration über Software DMX- Configurator kann in der Version »SR« sowohl sen- den als auch empfangen Power over Ethernet (PoE) möglich eingebauter Sequenzer 	ca. 325 €
ELKA KNX Gateway DMX-Web (www.elka.de)	 nicht über ETS programmierbar (separates Tool DMX-Gate3, über Ethernet), aber synchronisierbar nicht bidirektional (aber möglich mit 2 Geräten) max. 2.000 Gruppenadressen und max. 1.024 Objekte Szenenverarbeitung Websteuerung 	ca. 915 €
Erweiterung für Wiregate	bestehend aus: Wiregate + DMX-Plug-in (<i>www.wire- gate.de</i>) NanoDMX Controller USB (<i>www.dmx4all.de</i>)	ca. 475 € ca. 50 €
Selbstbaulösung mit Raspberry Pi, basierend auf OpenLighting Image (www.opendmx.net/index.php/ Open_Lighting_Project)	bestehend aus: Raspberry Pi Open DMX USB (<i>www.enttec.com</i>) Bauanleitung: <i>www.hackerspace-bam- berg.de/DMX_Lighting</i>	ca. 35€ ca. 55€

Tabelle 33.2 DMX-Gateways

Produkt	Eigenschaften	Preis
fi multi-dmx 3e DALI/DSI-zu- DMX Konverter (www.feno.com/de/produkte/ detail/fi-multi-dmx-3e.html)	Ausgabe von DALI-Dimmwerten als DMX-Datenstrom mit 3 Kanälen	

Tabelle 33.2 DMX-Gateways (Forts.)

Das DuoDMX Gateway von BAB Technology (Abbildung 33.4) ist in insgesamt fünf Varianten verfügbar (KNXnet/IP, KNX TP, EnOcean, Standalone oder als Erweiterung für den eibPort), für Deckeneinbau oder über für die Hutschiene (mit Adapter):

Abbildung 33.4 Das DuoDMX Gateway von BAB Technology

33.3 EnOcean-Gateway

Ein uni- oder bidirektionales *EnOcean-Gateway* dient der Anbindung von EnOcean-Komponenten an einen KNX-Bus. Es erlaubt Ihnen somit, Messwerte von EnOcean-Funksensoren über den KNX-Bus zu lesen, sowie im Fall eines bidirektionalen Gateways, auch EnOcean-Funkaktoren zu steuern.

33.3.1 Die KNX-Anbindung von EnOcean

Die in Tabelle 33.3 vorgestellten Geräte benötigten keine zusätzliche Spannungsversorgung, die KNX-Versorgung ist ausreichend. Gefunkt wird im ISM-Band 868,3 MHz, und unterstützt wird EnOcean EEP (EnOcean Equipment Profil) Version 2.1.

Produkt	Eigenschaften	Preis
Weinzierl Gateway KNX ENO 630 KNX ENO 632 KNX ENO 634 (<i>www.weinzierl.de</i>)	 unidirektionales (ENO 630) bzw. bidirektionales (ENO 632, ENO 634) Gateway bietet Logik- und Regelungsfunktionen (z. B. Verzögerungen, Lichtsteuerung, Gatter, Trigger, Wertgeber usw.) integrierter Repeater 16 Kanäle (ENO 630), 24 Kanäle (ENO 632), 32 Kanäle (ENO 634) Konfiguration über ETS Taster und Display als Bedienelemente Aufputzmontage, auch auf UP-Dose Busmonitorfunktion 	ca. 234 € ca. 270 € ca. 305 €
Hager EnOcean Funk KNX-Gate- way TYC120 (www.hager.de)	 bidirektional bietet Logik- und Steuerungsfunktionen (z. B. Verzögerungen, Gatter, Regulator usw.) 32 Kanäle Konfiguration über ETS Aufputzmontage, auch auf UP-Dose unterschiedliche Steuerfunktionen für jeden Kanal LCD für Inbetriebnahme und System-diagnose integrierter Repeater für EnOcean-Sendebefehl 	ca. 410 €
Selbstbaulösung mit Raspberry Pi auf Basis von FHEM oder openHAB und KNX-Anbindung mit eibd	 bestehend aus: Raspberry Pi, EnOcean USB Gateway USB 300 (www.enocean.com/de/eno- cean_module/usb-300-oem) oder alternativ: EnOcean Pi (www.ele- ment14.com/community/docs/DOC- 55169?CMP=PRR-GLO-13-0042) 	ca. 35 € ca. 38 € ca. 30 €

 Tabelle 33.3
 EnOcean-Gateways

Die drei genannten Weinzierl-Gateways werden durch die ETS-Software und zusätzlich über eine komfortable Windows-Software namens KNX ENO Tool angesprochen, die den fernbedienbaren Einlernvorgang von Sensoren und Aktoren unterstützt und zusätzlich einen Busmonitor für EnOcean-Telegramme bietet.

Sehr interessant für den experimentierfreudigen Maker ist natürlich die Selbstbaulösung, z. B. mit einem Raspberry Pi als Hardwareplattform. Die Funkanbindung lässt sich mit einem USB-Modul (USB 300, siehe Abbildung 33.5) lösen oder alternativ mit einer Erweiterungsplatine (EnOcean Pi).

Abbildung 33.5 Das EnOcean USB Gateway USB 300

Die KNX-seitige Anbindung realisieren Sie z. B. mit eibd (siehe Abschnitt 50.2, »eibd – der EIB-Daemon«), als Logik-Engine würden sich openHAB (siehe Abschnitt 50.6, »openHAB – eine Metaplattform«) oder FHEM (siehe Abschnitt 50.5, »FHEM – die freundliche Hausautomation«) anbieten.

33.3.2 Produktbeispiel KNX-EnOcean-Gateway

Mit dem KNX ENO (in Abbildung 33.6 in der Modellvariante 634) hat die Weinzierl Engineering GmbH (*http://www.weinzierl.de*) ein rundum sympathisches Produkt geschaffen. Die Anbindung von EnOcean-Funkgeräten an den KNX-Bus wird mit dem bidirektionalen Gateway zum Kinderspiel.

Abbildung 33.6 Das Weinzierl EnOcean Gateway KNX ENO 634 ohne und mit Abdeckung im Busmonitorzustand

623

33

Ausstattung des KNX ENO 634

Das KNX 634 besitzt 32 Kanäle, kann also 32 EnOcean-Geräte ansprechen. Da es bidirektional arbeitet, dürfen nicht nur Sensoren (Schalter, Zugangskarten, Temperatur, Feuchtigkeit, Anwesenheit usw.) ausgelesen, sondern auch Aktoren (Schalten, Dimmen, Jalousien, Stellantriebe usw.) geschaltet werden. Ein Kanal kann zudem die Aufgaben einer Logikfunktion (Gatter, Impuls, Verzögerung usw.) oder sogar eines Reglers (kontinuierlich, 2-Punkt, Lichtregelung) übernehmen.

Zur Parametrierung des KNX ENO benötigen Sie lediglich die ETS. Der EnOcean-Einlernvorgang erfolgt direkt über das Gateway selbst. Dazu besitzt es unter der abnehmbaren Abdeckhaube ein LCD (Liquid Crystal Display) und drei Taster. Im Normalbetrieb werden die Bedienelemente nicht benötigt, das Aufputzgerät kann also geschlossen montiert werden. Das Display unterstützt Sie sowohl bei der Inbetriebnahme als auch bei einer späteren Diagnose. Es zeigt erstaunlich viele Informationen, angefangen vom Betriebsmodus des Gateways selbst über seine physikalische KNX-Adresse bis hin zur Signalstärke der empfangenen Funktelegramme und deren Kanalzugehörigkeit. Gut gelöst ist auch die Abfrage von Kanälen. Sie erhalten in Klartext die Kanalnummer und den Kanalnamen (aus der ETS) sowie den Kanaltyp (Sensor/Aktor), das dazugehörige EnOcean Equipment Profile (EEP) und die Anzahl der benutzten und der noch verfügbaren Kanallinks.

Den Datenaustausch zwischen Sensoren und Aktoren des EnOcean-Netzwerks kann das Gateway in sehr vielen Fällen komplett autonom durchführen. Dazu legen Sie in der ETS Verknüpfungen an, die entweder intern oder extern ausgeführt sein dürfen:

- extern: Verknüpfung erfolgt über Gruppenadressen, dabei werden die übergebenen Werte auch auf dem KNX-Bus sichtbar
- ▶ intern: Verknüpfung ohne Gruppenadressen und ohne KNX-Telegramme

Über die ETS schalten Sie auch die Repeater-Funktion des Gateways ein. Sie dient dazu, größere Entfernungen zwischen Sensoren und Aktoren zu überbrücken. Das KNX ENO arbeitet als Level-1-Funk-Repeater, es leitet also nur Telegramme weiter, die direkt von einem Sender stammen. Telegramme von anderen Repeatern werden nicht noch einmal wiederholt.

Als überaus nützlich erweist sich der eingebaute Busmonitor des Weinzierl-Geräts. Ist er aktiviert, können Sie über das Display die letzten fünf empfangenen und gesendeten Telegramme in dezimaler bzw. hexadezimaler Darstellung mitlesen. Der umschaltbare Monitor funktioniert sowohl für KNX- als auch für EnOcean-Telegramme, wobei für Letztere sogar die Signalstärke beim Empfang dargestellt wird.

Das KNX ENO 634 wird vollständig über die KNX-Spannungsversorgung gespeist und benötigt im laufenden Betrieb ca. 12 mA.

Das KNX ENO Tool

Noch komfortabler wird die Inbetriebnahme Ihres EnOcean-Netzwerks, wenn Sie das kostenlose KNX ENO Tool (siehe Abbildung 33.7) der Weinzierl Engineering GmbH einsetzen. Das Windows-Programm stellt übersichtlich die Konfiguration des Gateways dar und beinhaltet außerdem einen EnOcean- und einen KNX-Busmonitor.

Abbildung 33.7 Das KNX ENO Tool mit einem eingelernten EnOcean-Temperatursensor

Ein Reichweitentest mit EnOcean-Temperatursensor

Um Ihnen eine Orientierungshilfe für die Reichweite von EnOcean-Sensoren zu geben, finden Sie in der folgenden Tabelle 33.4 die gemessene Signalstärke in unterschiedlichen Szenarien. Die Übertragung erfolgt jeweils von einem Temperatursensor (STM 330) zum KNX ENO 634, montiert auf Schalterhöhe an einer Betonwand.

Entfernung	Hindernis	Signalstärke
3 m	keines	3 (gut)
10 m	vorbei an Betonwand	2 (mittel)
16 m	vorbei an Betonwand	1 (gering)

 Tabelle 33.4
 Reichweitentest mit EnOcean-Temperatursensor

Entfernung	Hindernis	Signalstärke
4 m	Sensor im Kühlschrank	1 (gering)
9 m	über Betongeschossdecke	1 (gering)
18 m	über Betongeschossdecke und eine Tür	keine

 Tabelle 33.4
 Reichweitentest mit EnOcean-Temperatursensor (Forts.)

Der Temperaturwert selbst wurde jeweils korrekt übertragen, sofern die Kommunikation zustande kam.

33.3.3 EnOcean-Funk-Repeater

Wird die Entfernung zwischen EnOcean-Sender und -Empfänger zu groß oder haben Sie mit schwierigen baulichen Gegebenheiten zu kämpfen, können sogenannte *Funk-Repeater* effektiv unterstützen. Sie empfangen die Signale von Sensoren und Aktoren, prüfen sie und senden sie mit voller Sendeleistung weiter. Dabei müssen die Funk-Repeater nicht eingelernt werden, sondern empfangen und verstärken die Signale von allen Funksensoren in ihrem Empfangsbereich.

Eine sehr schöne Produktauswahl für den Innen- und Außenbereich bietet z. B. Eltako (*www.eltako.de*) mit den Funk-Repeatern FRP65, FRP61, FSRP-230V, FRP70-230V und FARP60-230V.

33.3.4 Von DMX nach EnOcean

Wenn Sie sich für eine Anbindung von DMX an EnOcean interessieren, sollten Sie sich zusätzlich noch das Duo DMX Gateway (Preis: ca. 220 €) der Firma BAB Technology (*www.bab-tec.de*) ansehen.

Kapitel 40 Audio im Smart Home

Ein Hausbussystem wie z. B. KNX ist generell nicht für die Übertragung von Audio- oder Videodaten geeignet, wohl aber für die Ansteuerung der Multimedia-Hardware und damit die Integration in das Automationskonzept.

Damit ein Audiosystem wie z. B. der klassische Hi-Fi-Verstärker smart wird, muss es immer auch vernetzt sein. Welche Möglichkeiten zur Audioeinbindung in eine intelligente Gebäudesteuerung es gibt, erfahren Sie in diesem Kapitel. Grundsätzlich empfiehlt es sich bei der Konzeptplanung, auf eine strikte Trennung von Zuspieler und Verstärker zu achten. Ihr System bleibt auf diesem Weg flexibler und besser gerüstet für künftige Änderungen.

Ergänzend zu diesem Kapitel stelle ich Ihnen im Praxisteil ein Low-Cost-/High-Power-Multiroom-Audiosystem mit KNX-Integration für den Selbstbau vor (siehe Kapitel 56, »Vernetztes Hören mit Multiroom Audio«).

40.1 Lautsprecher: Wand, Decke, Standgerät

Mit die wichtigsten Komponenten bei der Planung und Ausstattung des Audiosystems sind die richtigen Lautsprecher (und deren Positionierung), haben sie doch den maßgeblichsten Einfluss auf den Klang. Je nach Bauform spricht man entweder von Standlautsprechern, Wandlautsprechern, Deckenlautsprechern oder als Sonderform sogar von Bodenlautsprechern oder Unterwasserlautsprechern.

Für den Einsatz in den eigenen vier Wänden ergibt sich eine Reihe sinnvoller Kombinationen, wie in Tabelle 40.1 beschrieben:

Bauart	Standgerät	Aufbau	Einbau	Unsichtbar
Standlautsprecher, Regallautsprecher	alle möglichen Bauformen	-	-	-
Wandlautsprecher –		»OnWall« z. B. Quader, Kugel	»InWall« rund, eckig	möglich

Tabelle 40.1 Bauarten von Lautsprechern

Bauart	Standgerät	Aufbau	Einbau	Unsichtbar
Deckenlaut-	-	»OnCeiling«	»InCeiling«	möglich
sprecher		z. B. Quader, Kugel	rund, eckig	

Tabelle 40.1 Bauarten von Lautsprechern (Forts.)

40.1.1 Standlautsprecher

Unumstritten haben Standlautsprecher gegenüber den anderen Bauarten bei ähnlicher Qualität mit Abstand den besten Klang und sind für den audiophilen Hörer konkurrenzlos. Wand- und Deckenlautsprecher hingegen haben den Vorteil, sehr unauffällig (bzw. unsichtbar) installiert werden zu können.

Die größte Flexibilität, was die Positionierung betrifft, haben Sie ebenfalls durch Standlautsprecher oder auch Regallautsprecher. Die richtige Kabelverlegung vorausgesetzt, können Sie nicht eingebaute Geräte so lange ausrichten, bis sich der für Sie optimale Klang einstellt. Als »Notlösung« für vergessene Verkabelung bieten viele Hersteller mittlerweile funkbasierte Systeme an. Falls möglich, sollten Sie dennoch immer eine kabelgebundene Übertragung bevorzugen.

40.1.2 Deckenlautsprecher

Deckenlautsprecher lassen sich besonders gut in (gegossene) Betondecken oder alternativ in abgehängte Decken integrieren. Für Betondecken bietet z. B. die Firma Kaiser mit der Kompax-Produktpalette (siehe Abbildung 40.1 und Abbildung 40.2) robuste Einbaugehäuse in verschiedenen Größen an:

Abbildung 40.1 Kompax-Beton-Einbaugehäuse (Quelle: Kaiser)

Abbildung 40.2 Lautsprecher in Betondecke mit und ohne Gitter

Beim Einbau in abgehängten Decken und Leichtbauwänden sollten Sie unbedingt auf einen robusten Einbaukasten achten, den Sie entweder (z. B. aus Schichtholz) selbst konstruieren oder die von den Lautsprecherherstellern oft angebotenen Einbaukästen verwenden. Damit soll verhindert werden, dass sich die Tieftöner gegenseitig beeinflussen. Jeder Lautsprecher strahlt nach hinten genauso viel Schall wie nach vorne ab, allerdings mit umgekehrter Phase, bezogen auf den Druckgradienten. Je nach wiedergegebenem Schallereignis können durch ein nicht definiertes Gehäuse, wie es eine Hohlwand darstellt, bei bestimmten Frequenzen Auslöschungen, aber auf jeden Fall deutliche Klangveränderungen gegenüber der angestrebten Wiedergabe des Originalklangereignisses entstehen.

Zu Deckenlautsprechern sollte erwähnt sein, dass ihr akustisches Klangbild und der Stereoeffekt bedingt durch ihren Einbauort über dem Hörer den wandbasierten (auf Ohrhöhe des Hörers) oder gar den Standlautsprechern unterlegen ist. Der Unterschied ist bei Frontlautsprechern deutlich signifikanter als bei Rear/Surround-Lautsprechern.

40.1.3 Wandlautsprecher

Gängige Montageorte für Wandlautsprecher sind Beton-, Mauerwerk- oder Leichtbauwände. In jedem Fall ist eine gute Planung für die Verkabelung und den notwendigen Einbaukasten wichtig. Gegenüber der Deckenmontage werden Sie in der Regel zwar durch einen besseren Klang belohnt, sind aber weniger flexibel, was die Platzierung betrifft. Leider hat ein liebevoll eingebauter Wandlautsprecher nicht selten die Eigenschaft, genau dort zu stehen, wo das neu erworbene Möbelstück aufgestellt werden möchte ...

Ein optisch unaufdringliches Surround-System erreichen Sie sehr gut durch InWall-Lautsprecher oder sogar unsichtbare Modelle. Selbst für leistungsstarke Subwoofer gibt es mittlerweile clevere Einbaumöglichkeiten. Dass ein auch optisch ansprechendes Surround-System nicht unbedingt »InWall« sein muss, beweist z. B. der Hersteller Bose in Abbildung 40.3.

Abbildung 40.3 Bose-Satelliten-Wandlautsprecher

40.1.4 Wichtige Hersteller von Einbaulautsprechern

Hochwertige, aber bezahlbare Lautsprecher, die sich für Wand- und Deckenmontage eignen, finden Sie z. B. bei:

- ► Canton (www.canton.de)
- ► KEF (www.kef.com)
- ► Boston Acoustics (www.bostonacoustics.de)
- ► Klipsch (www.klipsch.com)
- ► B&W (www.bowers-wilkins.de)

Falls Sie ein Anhänger von gänzlich unsichtbaren Schalllösungen sind, sollten Sie einen Blick auf das AmbienTone-System von In-Akustik werfen. AmbienTone ist ein Flachmembranlautsprecher auf Basis eines Biegewellenwandlers. Eingepasst wird das System in eine Gipskartonplatte und installiert in Trockenbauweise.

▶ In-Akustik (www.in-akustik.com)

40.2 Klassisch verstärken in Stereo und Surround

Passend zu den gewählten Lautsprechern brauchen Sie für Ihr (Multiroom-)Audioerlebnis einen oder mehrere Hi-Fi-Verstärker bzw. Endstufen (siehe Abbildung 40.4). Im einfachsten Fall ist das ein Stereoverstärker, mit dem Sie zwei Lautsprecher (links/rechts) in einer Zone betreiben. Hat der Verstärker noch ein weiteres Anschlussterminal, kann ein zweites Lautsprecherpärchen angeschlossen werden, das jedoch immer noch der einen Zone zugeordnet ist. Mehrere Zonen bedeuten stets auch mehrere unabhängige Stereoverstärker oder eine Mehrkanalendstufe.

Abbildung 40.4 Multiroom-Audio mit Einzelverstärkern

Je nach verwendeter Audiomatrix ist ein derart aufgebautes System sehr flexibel erweiterbar. Für einen zusätzlichen Raum (bzw. eine neue Zone) benötigen Sie lediglich ein Lautsprecherpaar, einen Verstärker und eine entsprechende Verkabelung.

Als Verstärker bieten sich mehrere Varianten an, in den folgenden Abschnitten möchte ich Ihnen drei davon vorstellen.

40.2.1 Hi-Fi-Vollverstärker

Die klassische Methode ist es, Hi-Fi-Vollverstärker, die Sie entweder bereits besitzen oder recht günstig gebraucht erwerben können, einzusetzen:

- ▶ Vorteile: High-End-Geräte können eingesetzt werden, Netzteil in der Regel integriert
- ▶ Nachteile: groß, teilweise hoher Stromverbrauch (auch im Stand-by-Betrieb)

Neben reinen Stereo- oder Surround-Verstärkern bieten sich auch Mehrkanalendstufen an. Im Produktangebot von Mediacraft (*www.mediacraft.de*) finden Sie beispielsweise Verstärker von Parasound, Audiocontrol und Russound von 3 bis 16 Kanälen.

40.2.2 Hutschienenverstärker

Eine sehr aufgeräumte Realisierung ist mit Audioverstärkern für die Hutschiene möglich. Im Beispiel in Abbildung 40.5 sehen Sie den AV30 der Firma Maintronic (*www.maintronic.de*, Preis: ca. 100 €).

- Vorteile: sehr kompakt (REG: 2 TE), sehr geringer Verbrauch (< 1 W Stand-by), aufgeräumte Installation
- ▶ Nachteile: keine hohen Leistungen (2 × 15 W), aber für viele Fälle ausreichend

Abbildung 40.5 AV30-Hutschienen-Audioverstärker von Maintronic (Quelle: Maintronic)

40.2.3 Mini-Amps

Eine wie ich finde sehr spannende Möglichkeit, hochwertigen Klang zu erzeugen, bietet sich mit Mini-Amps. Ausgestattet mit nur den notwendigsten Anschlüssen (Netzteil, Stereolautsprecher, einmal Line-In) und Bedienelementen (Lautstärke, Ein/Aus), haben sie genau nur eine Aufgabe: die möglichst detailgetreue Verstärkung des Eingangssignals. Der in folgender Abbildung 40.6 vorgestellte Verstärker der Firma SMSL leistet das mit Bravour. Beachten Sie bitte die »Größe« des Geräts, er ist gerade mal so groß wie ein halbes Pfund Butter (das zugehörige Netzteil allerdings ebenso).

Abbildung 40.6 Mini-Amp (SMSL SA-50)

Für unterschiedliche Anforderungen stehen drei Leistungsklassen zur Verfügung (siehe Tabelle 40.2):

Modell	Leistung	Stromversorgung	Preis
SMSL SA-S3	2 × 18 W/4 Ohm	14 V DC, 3 A	ca. 50 €
SMSL SA-50	2 × 56 W/4 Ohm	24 V DC, 4,5 A	ca. 60 €
SMSL SA-98E	2 × 160 W/4 Ohm	32 V DC	ca. 100 €

Tabelle 40.2 SMSL-Mini-Amps

Lassen Sie sich von der geringen Baugröße nicht täuschen, schon die Version mit 2×50 W bietet für einen 30 m² großen Wohnraum mehr als genügend Leistung.

40.3 Verstärker für Multiroom-Audio

Ein Mehrzonenverstärker oder Multiroom-Verstärker ist ideal für die Anforderungen eines Multiroom-Audiosystems ausgelegt. Er verteilt mehrere verschiedene Eingangssignale auf mehrere Zonen (Räume), entweder unabhängig oder zusammenfassend. Für Sie bedeutet das, Sie können in jedem Raum eine andere Musikquelle hören oder in mehreren Räumen die gleiche.

Abbildung 40.7 Multiroom-Audio mit Multiroom-Verstärker

40

Im Gegensatz zu der Lösung mit mehreren unabhängigen Stereoverstärkern benötigten Sie für einen Multiroom-Verstärker (siehe Abbildung 40.7) keine zusätzliche Audiomatrix für die Verteilung der Eingangssignale auf die verschiedenen Ausgänge.

Hersteller von guten und hochwertigen Multiroom-Systemen, teils mit sehr ansprechenden Bedieneinheiten für Tisch oder Wandmontage, sind unter anderem: Russound, Crestron, Revox, Linn und Control4.

Ein Beispiel: Das in den USA sehr beliebte, aber zunehmend auch in Deutschland gern eingesetzte spezialisierte Multiroom-Verstärkersystem der Firma Russound (*www.rus-sound.com*, siehe Abbildung 40.8) bietet gute Automatisierbarkeit über RS-232 und TCP/ IP und kann auch auf eine große Zonenanzahl skaliert werden.

Abbildung 40.8 8-Kanal-Multiroom-Verstärker (Russound MCA-C5)

wahl aus zwei recht ähnlichen Modellen, beschrieben in Tabelle 40.3:

Modell Leistung Eingänge Zonen Automatisierbar-Preis pro Kanal keit ► TCP/IP, RS-232 20 W 6 6 1.450 US\$ Russound ► 7 IR-Ausgänge MCA-C3 inklusive erweiterbar AM/FMauf 36 ► 6 Keypad-Aus-Tuner gänge ▶ 612-V-Trigger-

Outputs

Je nach gewünschter Zonenzahl im Basisgerät und Ausgangsleistung haben Sie die Aus-

Tabelle 40.3 Multiroom-Verstärker MCA-C3 und MCA-C5 von Russound

Modell	Leistung pro Kanal	Eingänge	Zonen	Automatisierbar- keit	Preis
Russound MCA-C5	40 W	8 inklusive AM/FM- Tuner	8 erweiterbar auf 48	 TCP/IP, RS-232 7 IR-Ausgänge 8 Keypad-Ausgänge 8 12-V-Trigger-Outputs 	1.550 US\$

Tabelle 40.3 Multiroom-Verstärker MCA-C3 und MCA-C5 von Russound (Forts.)

Optional können Sie in jeder Zone (in jedem Zimmer) ein sogenanntes *Keypad* (Abbildung 40.9) installieren und mit dem Verstärker verbinden (über Cat.5e-Leitung, RJ-45-Stecker).

Abbildung 40.9 Multiroom-Keypad (Russound C6)

Vollintegrierte Multiroom-Verstärker haben, wie bereits erwähnt, eine Audiomatrix eingebaut und heißen deswegen gern auch Matrixverstärker. Einen Mehrkanalverstärker ohne Multiroom-Funktionalität können Sie aber auch um einen separaten Audiomatrix-Switch (z. B. von Control4, *www.control4.de*) erweitern, um individuellere Lösungen zu realisieren.

40.4 Automatisierung eingebaut: KNX-Multiroom-Verstärker

Für den begeisterten Automatisierer wie geschaffen sind Multiroom-Verstärker mit eingebautem KNX-Anschluss (Abbildung 40.10). Mit ihnen gelingt der Spagat zwischen dem Audiosystem und der Smart-Home-Infrastruktur am besten. Natürlich funktioniert es mit mehr oder weniger Aufwand, auch andere Lösungen smart zu integrieren, aber mit einer nativen KNX-Anbindung ist es besonders komfortabel.

Abbildung 40.10 Multiroom-Audio mit KNX-Multiroom-Verstärker

Ganz frisch hat die Firma Jung (*www.jung.de*, siehe Abbildung 40.11) eine toll integrierte Lösung vorgestellt. Der KNX-fähige Multiroom-Verstärker im 19-Zoll-Einschubformat mit eingebautem Busankoppler hat optionales Webradio, einen integrierten MP3-Player und bis zu acht verstärkte Ausgänge für Stereolautsprecher.

Abbildung 40.11 KNX-Multiroom-Verstärker (Jung)

Vier Modellvarianten aus Tabelle 40.4 stehen zur Auswahl:

Modell	Leistung pro Kanal	Eingänge	Zonen	Automa- tion	Preis
MR-AMP 4.4	30 W	4 NF-Signale	4, erweiter- bar plus 2 Ste- reoaus- gänge	KNX	1.933€
MR-AMP 4.8	30 W	4 NF-Signale	8, erweiter- bar plus 2 Ste- reoaus- gänge	KNX	2.811€
MR WR-AMP 4.4	30 W	4 NF-Signale, plus Webradio, MP3-Player, SD-Kartenleser	4, erweiter- bar plus 2 Ste- reoaus- gänge	KNX LAN 100 MBit/s	2.610€
MR WR-AMP 4.8	30 W	4 NF-Signale, plus Webradio, MP3-Player, SD-Kartenleser	8, erweiter- bar plus 2 Ste- reoaus- gänge	KNX LAN 100MBit/s	3.487€

Tabelle 40.4 Jung-KNX-Multiroom-Verstärker

40.5 Ton mit dem Rechner erzeugen: Soundkarten

Zur Versorgung Ihres Multiroom-Systems mit Musik aus möglichst vielen unterschiedlichen Quellen können Sie entweder zu speziell dafür ausgelegten Geräten (sogenannten Media-Streamern, Beispiel: Russound DMS-3.1) greifen, oder Sie rüsten einen vorhandenen Rechner/Server mit entsprechenden Erweiterungen aus.

Als Bastler, der gewillt ist, sich in die Materie einzuarbeiten, erreichen Sie mit einer Kombination aus Rechner und Soundkarten eine preisgünstige, flexible und durchaus sehr hochwertige Lösung. In Kapitel 56, »Vernetztes Hören mit Multiroom Audio«, finden Sie ein passendes Realisierungsbeispiel.

Nach welchen Kriterien wählen Sie die für Sie passende Soundkarte aus? Je nach Einbausituation/Gehäuse fällt die Wahl entweder auf eine externe USB-Soundkarte oder

734

eine interne PCI- oder PCIExpress-Karte. Achten Sie beim Kauf auf die folgenden Eigenschaften:

- Am besten eignet sich eine 7.1-Soundkarte (mit den insgesamt acht Kanälen können Sie vier Stereozonen versorgen).
- Wichtig ist Linux-Kompatibilität (eine gute Übersicht darüber, welche Geräte vom Linux-Soundtreiber ALSA unterstützt werden, finden Sie z. B. hier: www.alsa-project.org/main/index.php/Matrix:Main).
- Neben den Klinkenausgängen sollte noch jeweils ein Toslink (SPDIF-IN, SPDIF-OUT) für Ein- und Ausgang zur Ausstattung gehören.
- ▶ Der Signal-Rausch-Abstand (SNR) sollte möglichst hoch sein (90 dB, besser noch 100 dB).
- Sampling-Rate: bei USB-Karten 48 kHz, bei internen Karten 96 kHz.
- Auflösung: bei internen Karten 16 Bit, bei externen Karten 24 Bit. Zum Vergleich: Bei Audio-CDs wird eine Abtastrate von 44,1 kHz/16 Bit benutzt, was ausreichend ist, um Audiosignale mit Frequenzen bis 22 kHz zu erfassen.

Die ALSA-Treiber von Linux sind problemlos in der Lage, auch mehrere angeschlossene Soundkarten einzubinden. Einer Multiroom-Konstruktion mit mehr als vier Räumen steht also nichts im Weg.

Die folgende Abbildung 40.12 zeigt Ihnen eine externe USB-Soundkarte mit 7.1-Ausgang der Firma Sweex (*www.sweex.com*), die ohne Treiberinstallation direkt unter Linux funktionsfähig ist.

Abbildung 40.12 Externe USB-Soundkarte 7.1 (Sweex)

40.6 Sonos und Squeezebox

Die Logitech-*Squeezebox*-Produktpalette, in Zusammenarbeit mit dem freien *Logitech Media Server* (LMS), ist ebenfalls ein tolles Gespann, wenn es um die Einbindung in eine Smart-Home-Umgebung geht. Das KNX-UF, siehe Abschnitt 48.3.8, »Noch mehr Möglichkeiten: Externe Logikbausteine und Funktionsvorlagen«, hält im Download-Bereich eine Handvoll praktischer Lösungen bereit, die Sie in Ihr Audiokonzept übernehmen können. Der Baustein 12299 (Squeeze) beispielsweise erlaubt sogar die Telnet-Kommunikation für den Gira HomeServer.

Eine Squeezebox besitzt zwei verschiedene Betriebsmodi, nämlich in Verbindung mit

- einem von Logitech bereitgestellten Internetserver (http://www.mysqueezebox.com/index/Home)
- oder einem eigenen Logitech-Media-Server im Heimnetzwerk (http://wiki.slimdevices.com/index.php/Main_Page).

Der LMS läuft auf allen gängigen Betriebssystemen, ist Open Source und lässt sich zusätzlich durch jede Menge Plug-ins erweitern (*http://wiki.slimdevices.com/index.php/ SqueezeCenter_Plugins*), womit er zu einer echten Spielweise für den Automatisierer mit Interesse an Multiroom-Audio wird.

Abbildung 40.13 Das Squeezebox-Radio mit Farbdisplay (Logitech)

Ähnlich gut sieht es mit der Multiroom-Audiolösung von Sonos aus (*www.sonos.de*). Speziell für OpenHAB und FHEM stehen Ihnen Plug-ins zur Verfügung, die eine Steuerung der sehr beliebten Sonos-Gerätelandschaft erlauben. Die Sonos-Wireless-Lautsprecher sind prima geeignet, ein Multiroom-Audiosystem umzusetzen, auch wenn Sie die dazu notwendige Verkabelung nicht vorbereiten konnten.

Kapitel 48 HomeServer Experte und Client kennenlernen

Die mächtige Software HomeServer Experte ist Konfigurationstool, Logikeditor, GUI-Editor und vieles mehr für den beliebten Gira HomeServer.

Das Softwarepaket für den Gira HomeServer besteht aus mehreren Windows-Programmen, von denen der *HomeServer Experte* (kurz: *HS Experte*, Abbildung 48.1) jedoch das wichtigste ist. Über ihn führen Sie die Konfiguration und Programmierung aller Home-Server- und FacilityServer-Varianten durch. In diesem Kapitel lernen Sie das sehr umfangreiche Tool genauer kennen.

Abbildung 48.1 Arbeitsfenster des HomeServer Experten 4.2

48.1 Installation und Grundeinstellungen

Die Erstinbetriebnahme eines HomeServers/FacilityServers besteht aus drei Schritten: der Herstellung der notwendigen Verbindungen, die Installation der Software HomeServer Experte und deren Konfiguration.

48.1.1 Einbindung des HomeServers in die Infrastruktur

Der HomeServer besitzt leider keinen integrierten KNX-Buszugang, sondern wird immer über eine externe KNX-Schnittstelle angeschlossen. Zur Auswahl stehen KNX-IP-Schnittstellen bzw. KNX-IP-Router, RS-232-Schnittstellen und USB. In Kapitel 27, »Mit Schnittstellen auf den KNX-Bus zugreifen«, finden Sie einen ausführlichen Vergleich der unterschiedlichen Möglichkeiten. Der unten stehende Beispielaufbau (Abbildung 48.2) setzt auf eine USB-Verbindung, die den Vorteil hat, komplett autark vom sonstigen Hausnetzwerk (Switch, Router) zu funktionieren.

Abbildung 48.2 Anschluss des Gira HomeServers

Der Anschlussaufbau zeigt auch die Rolle des Inbetriebnahmerechners, auf dem die HomeServer Experte-Software installiert wird. Zweckmäßigerweise (aber nicht notwendigerweise) läuft auf diesem PC auch die ETS. Ein weiterer Rechner, z. B. ein Touchscreen-PC, stellt entweder über den QuadClient oder einen Webbrowser die mit dem HomeServer erzeugte Visualisierung dar. Genauso gut könnte der Visu-Rechner auch ein mobiles Gerät sein. Die zusätzliche KNX-IP-Schnittstelle hat den Zweck, der ETS die Parametrierung der KNX-Geräte zu erlauben. Alternativ ist auch der HS in der Lage, diese Aufgabe zu übernehmen. Über seine eingebaute iETS-Unterstützung dient er der ETS als KNX-IP-Interface. Die iETS-Funktionalität muss über die Projekteinstellungen seitens des HomeServer Experten aktiviert werden.

Der HomeServer kann optional über einen ISDN-Bus z. B. mit einer FRITZ!Box verbunden werden, was unter anderem das einfache Absetzen von Telefonanrufen (z. B. im Alarmfall) ermöglicht.

Damit der HS als Standalone-Gerät seine Arbeit korrekt ausführt, benötigt er den Inbetriebnahmerechner nicht mehr. Dieser ist nur bei der Programmierung von Bedeutung. Der Visualisierungs-PC ist ebenso lediglich für die Visualisierung notwendig. Existiert er nicht, verrichtet der HS trotzdem autonom seine Aufgabe als Logikmaschine.

48.1.2 Die Installation der Gira HomeServer-Software

Die jeweils neueste Version der HomeServer-Software können Sie sich auf der Gira Download-Seite herunterladen, der Link ist:

http://www.gira.de/service/download/index.html?id=1043

Zum Zeitpunkt, an dem dieses Kapitel entstand, war der aktuelle Stand die Version 4.2 vom Juli 2014. Das ca. 240 MByte schwere Zip-File passt sowohl für die HomeServer 2 und 3 als auch für das aktuelle HomeServer 4-Modell und natürlich für die FacilityServer. Die neueste Firmware für den HomeServer selbst ist ebenso in dem Archiv enthalten wie der QuadClient und dessen Config-Programm. Vor dem Download ist eine kostenlose Registrierung erforderlich.

An dieser Stelle ein kleiner Hinweis: Das HS Experte-Softwarepaket funktioniert wunderbar mit einer virtuellen Maschine, z. B. über VirtualBox (siehe Abschnitt 19.2, »Ideal für Tests: VirtualBox«).

Unabhängig davon starten Sie nach dem Download das Setup-Tool Gira_Experte_ Setup_v4.2 mit einem Doppelklick. Nach erfolgreicher Installation finden Sie im Windows-Startmenü den Experten 4.2 vor, den Sie bitte auch direkt starten. In der Einrichtungsdialogbox (Abbildung 48.3) können Sie die Standardpfade übernehmen oder ihn auf eine andere Partition bzw. Festplatte legen. Sinnvoll ist insbesondere, das Verzeichnis für Sicherungskopien nicht ebenfalls auf Laufwerk C unterzubringen.

Nachdem Sie die Pfade festgelegt haben, dürfen Sie bereits das erste Projekt anlegen (siehe Abbildung 48.4). Möchten Sie kein bestehendes Projekt importieren, belassen Sie die Checkbox auf LEERPROJEKT und geben im Feld PROJEKTNAME Ihrem ersten Projekt einen Namen. Das PFAD-VORSCHAU-Feld verrät Ihnen, wo die Projektdaten abgelegt werden.

HS/FS Experte eini	ichten	8	
Basisordner:	C:\Users\Chef\Documents\Gira\HS+FS Experte 4.2\		
	In diesem Verzeichnis können mit dem HS/FS Experte generierte Daten abgelegt werden. Z. B. Globale Bibliotheken, usw.		
Projekte: C:\Users\Chef\Documents\Gira\HS+FS Experte 4.2\Projekte\			
Sicherungskopien:	In diesem Verzeichnis können alle mit dem HS/FS Experte erstellten Projekte abgelegt werden.		
In diesem Verzeichnis werden alle mit dem HS/FS Experte erstellten Sicherungskopien von Projekten abgelegt werden.			
	Qk Abbrech	ien	

Abbildung 48.3 Einrichtung der Basis- und Projektordner

Neues Projekt anlegen						
Vorlage für neues Proj	Vorlage für neues Projekt auswählen:					
 Leerprojekt, erze 	ugt ein leeres Projekt.					
C Mustervorlage, e	rzeugt ein neues Projekt auf Basis einer Mustervorlage.					
Mustervorlage:	<mustervorlage auswählen=""></mustervorlage>					
C Projekt, erzeugt e	C Projekt, erzeugt ein neues Projekt auf Basis eines vorhandenen Projekts.					
Projekt:						
Ordner: C:\Users\Chef\Documents\Gira\HS+FS Experte 4.2\Projekte\						
Projektname: ErstesProjekt						
Pfad-Vorschau: C:\Users\Chef\Documents\Gira\HS+FS Experte 4.2\Projekte\ErstesProjekt\ErstesProjekt						
Bestehendes Projekt öffnen Projekt importieren Dk Abbrechen						

Abbildung 48.4 Ein neues HomeServer-Projekt anlegen

Die Installation ist damit beendet, im nächsten Schritt erfahren Sie, welche Grundeinstellungen für ein erstes HomeServer-Projekt vorgenommen werden.

48.1.3 Die Grundeinstellungen für ein erstes Projekt

Das Arbeitsfenster von HomeServer (HS) Experte sollte jetzt vor Ihnen liegen. Auf der linken Seite sind in mehreren Registern (STAMMDATEN, EIB-STEUERUNG, OBERFLÄCHE usw.) die wichtigsten Funktionen angeordnet. Im unteren Bereich des Fensters finden Sie, ebenfalls in drei Register aufgeteilt, textuelle Informationen über DETAILS, MEL-DUNGEN und den ARBEITS-VERLAUF. Als Meldung erhalten Sie bereits einen ersten Fehler: »ungültige IP-Adresse«. Im Rahmen der Ersteinstellung für Ihr Projekt wird dieser direkt mit behoben.

Klicken Sie bitte für den Aufruf der Projekteinstellungen auf das Icon PROJEKT im Register STAMMDATEN mit der rechten Maustaste und lassen Sie dadurch gleich einen Link auf den Desktop des HS Experten anlegen. Sie benötigen diese Einstellungen noch öfter. Ein Doppelklick auf das PROJEKT-Desktopsymbol öffnet schließlich den Einstellungsdialog PROJEKTEINSTELLUNGEN (Abbildung 48.5) mit auf den ersten Blick schrecklich vielen Optionen.

Projekteinstellungen				
Datei Hilfe				
Schließen @Hilfe				
 ■ Protekteinstellunger + ElB & iETS ■ Oberfläche - Designs - Refresh-Zeiten ■ NFP/Zeitabgleich - Remanentspeicher - KO-Gateway - Push-Notflication ⊕ SMMP - MIB - TTRAPS ⊕ IP-Telegramme - Umwandlungstabelle ⊕ ISDN - SMS-Center - PIN-Abfrage - ISDN-Direkteinwahl ⊕ Sonstiges - Benutzergruppen - Fehler-Zeiten - Status/Steuerung - AGFEO-Anlage - Koodinaten - Globale Bibliothek - Zeitzone - Gira TKS-IP-Gateway 	Projekteinstellungen Projektbezeichnung: Geräte-Typ: Bemerkungen/Notizen: Wenn das Gerät von auß	HomeServer Projekt HomeServer 2 / HomeServer 3 FacilityServer FacilityServer 4 FacilityServer 4 sen erreichbar ist, können Sie hier die Adres	USB-ISDN-Adapter: Kein Adapter	Peben:

Abbildung 48.5 Die Dialogbox für Projekteinstellungen

Keine Sorge, Sie müssen sich an dieser Stelle nicht mit allen Einstellungen direkt beschäftigen, wir werden zunächst nur ein funktionsfähiges Setup herstellen. Die folgende Tabelle 48.1 enthält, auf Register und Dialogfelder aufgeteilt, welche Einstellungen Sie abweichend von den Standardeinstellungen jetzt vornehmen:

Register	Feld	Einstellung
Projekteinstel- lungen	Projektbezeichnung	Geben Sie Ihrem Projekt einen aus- sagekräftigen Namen.
	Geräte-Typ	Angabe, welchen HomeServer Sie einsetzen (hier: HS 3).
EIB & ETS	Schnittstelle	Ausgehend davon, dass Sie den HS über eine USB-Schnittstelle mit dem KNX-Bus verbinden, ist USB die richtige Einstellung.

Tabelle 48.1 HS Experte: Basisprojekteinstellungen

48

Register	Feld	Einstellung
Netzwerk	Eigene IP	die gewünschte IP-Adresse Ihres HS: z. B. 192.168.178.11
	Netzwerkmaske	die für Ihr Netzwerk passende Maske, in der Regel 255.255.255.0
	Internet-Zugang	Kann zunächst auf KEIN ZUGANG gestellt werden.
		falls Sie einen DSL-Router einsetzen: Router – Verbindung halten (Portal)
	Default-Gateway	Ihre Router-IP-Adresse, z. B. 192.168.178.1
	DNS-Server	Ihr bevorzugter DNS-Server, z. B. Ihr Router: 192.168.178.1
NTP/Zeitabgleich	falls Datum und Zeit über KNX empfangen wird (z. B. Wetter- station)	Tragen Sie für KOBJEKT FÜR DATUM und KOBJEKT FÜR ZEIT die Kommuni- kationsobjekte der Wetterstation ein (siehe Abschnitt 48.2.2 zum Import von Gruppenadressen).
	Alternativ können Datum und Zeit auch über einen NTP-Server bezogen werden.	Tragen Sie die ADRESSE DES NTP-SER- VERS ein, z. B. die IP-Adresse Ihres Rou- ters.

Tabelle 48.1 HS Experte: Basisprojekteinstellungen (Forts.)

Verlassen Sie die Dialogbox mit dem SCHLIESSEN-Button links oben und klicken Sie im HS Experte-Arbeitsfenster auf das PRÜFEN-Symbol in der Werkzeugleiste am oberen Fensterrand. Der eingangs erwähnte Fehlerhinweis im Register MELDUNGEN am unteren Fensterrand sollte jetzt verschwunden sein.

48.1.4 Anlegen des Administrator-Accounts

Für das spätere Programmieren des HomeServers benötigen Sie einen Benutzer-Account mit Administratorrechten. Diesen legen Sie, wie Abbildung 48.6 zeigt, über die Dialogbox STAMMDATEN • BENUTZER an.

Abbildung 48.6 Ein neues Administratorkonto

Füllen Sie die einzelnen Register entsprechend Tabelle 48.2 aus:

Register	Feld	Einstellung
Daten	Bezeichnung	Bezeichnung des Accounts, z.B. »Administrator«
	Benutzername	Name des Benutzers (hier »admin«)
	Passwort	ein möglichst starkes Passwort
	Alias	Ein frei definierbarer Aliasname
Benutzerrechte	Listen • Interner Zugriff	Setzen Sie den Wert für alle vier Felder von KEIN ZUGRIFF auf PASSWORT.
	Listen • Externer Zugriff	
	Administration • Interner Zugriff	
	Administration • Externer Zugriff	

Tabelle 48.2 Anlegen eines Administratorkontos

48.2 Arbeiten mit Kommunikationsobjekten

Kommunikationsobjekte (KOs) sind die Datenspeicher in der KNX-Welt. Über KOs läuft die KNX-Kommunikation ab, und auch für den HomeServer spielen sie eine essenzielle Rolle. Logikfunktionen benutzen KOs als Eingangswerte, führen abhängig davon Berechnungen durch und stellen das Ergebnis wiederum als KO am Ausgang der Logik dar. Die HomeServer-Visualisierung wird ebenfalls über KOs mit den darzustellenden Daten

versorgt und wandelt Benutzeraktionen (z. B. einen Tastendruck) ebenso in Kommunikationsobjekte um, die als Telegramm auf dem KNX erscheinen können.

48.2.1 Externe und interne Kommunikationsobjekte

Die HomeServer-Software unterscheidet zwei verschiedene Arten von Kommunikationsobjekten: den *externen* und den *internen*.

Externe Kommunikationsobjekte – die echten

Externe KOs sind Ihnen bereits aus dem ETS-Kapitel bekannt, sie dienen der KNX-Kommunikation und werden auch als EIB-Objekte oder KNX-Objekte bezeichnet. Der Home-Server hört im laufenden Betrieb den KNX-Bus permanent ab und speichert intern den zuletzt angenommenen Wert aller bekannten externen Kommunikationsobjekte. Der HomeServer ist also stets im Bilde über alle Informationen, die über den Bus ausgetauscht werden, und natürlich ebenso über die Daten, die er selbst erzeugt und als Telegramme auf den Bus sendet. Man nennt das ein *Prozessabbild*.

Interne Kommunikationsobjekte – die HomeServer-Spezialität

Im Gegensatz dazu tauchen die *internen KOs* (iKOs) nie auf dem KNX-Bus als Telegramm auf, sie sind sozusagen die internen Variablen des HomeServers. Sie dienen der Speicherung beliebiger Werte und finden insbesondere bei Logikdefinitionen Verwendung. Falls Sie sich mit Programmiersprachen auskennen, hilft Ihnen vielleicht die Vorstellung, dass die internen KOs gut mit globalen Variablen vergleichbar sind. Dass sie auch den Namen Kommunikationsobjekt tragen, kommt daher, dass sie innerhalb der Home-Server-Software in den meisten Fällen genau wie ihre Kollegen, die echten (externen) KOs, behandelt werden.

Interne KOs dürfen Sie selbst beliebig anlegen, ändern und löschen, wohingegen externe KOs meist über einen Import aus der ETS-Datenbank eingelesen werden.

48.2.2 Der Editor für Kommunikationsobjekte

Die Arbeit mit Kommunikationsobjekten findet im HS Experten immer über die Dialogbox Kommunikationsobjekte statt. Das gleichnamige Symbol zum Aufruf finden Sie im Register STAMMDATEN. Legen Sie es am besten direkt als Verknüpfung auf den HS Experte-Desktop, wie in Abschnitt 48.1.3, »Die Grundeinstellungen für ein erstes Projekt«, beschrieben.

Kommunikationsobjekte in der Baumansicht

Der Editor für Kommunikationsobjekte wird sowohl für externe als auch für interne KOs verwendet. Umschalten zwischen den beiden Typen können Sie über die beiden Register

INTERN und EIB (= extern) im linken oberen Fensterbereich. Sehen Sie sich die bereits automatisch angelegten internen KOs in Abbildung 48.7 einmal an:

🗅 Kommunikationsobjekte 💿 💷 🔀				
Datei Extras Hilfe				
<u>Schließen</u> ■ Importieren Deu † Entfernen Q, Suchen @∐ilfe				
HS Intern D EIB	Daten			
⊡⊡‡ Interne Objekte	Bezeichnung:	Seriennummer		
⊡ ⊡ System	Datentyp:	14-Bute Text		
Gira TKSJP.Gateway empfangen	Remanenteneicher	La Kommunikationsobiekt remanent speichern		
Gira TKS-IP-Gateway senden	InitWert			
Telefonbedienung & Anruf-Alarmierung	Min. Wert:			
i≘ Urlaub & Feiertag	Max. Wert:			
EIB-Monitor	Schrittgröße:			
ISDN ISDN-Sperre	Liste:			
MTP Differenz	Gruppenadresse:			
	KO-Gateway empfangen:	🗆 Ja		
System (nach Start immer 1)	KO-Gateway senden:	🗖 Ja		
Verbindungen (Extern)				
1				

Im linken Fensterteil finden Sie alle KOs, geordnet in einer Baumansicht. Zusammengehörige KOs können nach Belieben in einen oder mehrere Ordner gruppiert werden. Auswirkungen auf die Funktion hat das keine, die Ordner dienen lediglich dem Zweck einer Ordnung. Wenn Sie ein KO auswählen, erhalten Sie im rechten Fensterteil die Detailinformationen angezeigt. Die vom HS Experten angelegten iKOs sollten Sie nicht verändern. Bei selbst eingefügten iKOs hingegen bestimmen Sie selbst über BEZEICHNUNG, DATENTYP, INIT.-WERTE usw.

Anlegen von internen Kommunikationsobjekten

Am schnellsten legen Sie ein iKO mit Klick der rechten Maustaste auf einen Ordner in der Baumansicht an. Im Kontextmenü haben Sie dabei die Wahl zwischen OBJEKT ANLE-GEN (also iKO anlegen) und ORDNER ANLEGEN. Das bekannte Copy-and-paste funktioniert ebenfalls, sowohl für ganze Ordner als auch für einzelne KOs.

Wenn Sie das Kontextmenü (rechte Maustaste) über einem KO öffnen, finden Sie weitere nützliche Funktionen:

- DUPLIZIEREN: Erstellt eine Kopie des KO, die Sie in der rechten Fensterhälfte editieren können. Die Funktion eignet sich gut für das Anlegen mehrerer KOs mit z. B. gleichen Datentypen und ähnlichen Bezeichnungen.
- VERWEISE: Zeigt in einem neuen Fenster alle Stellen im aktuellen Projekt (z. B. Logikfunktionen), an denen dieses KO verwendet ist.
- ► UMWANDELN (EIB ⇔ INTERN): Macht aus einem iKO ein KO, wobei direkt eine Gruppenadresse zugeordnet wird. Die Rückumwandlung funktioniert genauso.

Importieren von externen Kommunikationsobjekten

Externe KOs legen Sie in der Regel nicht an, sondern importieren sie aus der ETS in den HS Experten. Wie Sie dabei vorgehen, finden Sie in folgender Kurzanleitung:

- 1. Wechseln Sie in die ETS-Software, öffnen Sie Ihr Projekt und wählen Sie aus dem Menü Extras die Funktion OPC EXPORTIEREN. Merken Sie sich den Filenamen der exportierten *.esf*-Datei.
- 2. Zurück im HS Experten, genauer gesagt in der Dialogbox KOMMUNIKATIONSOBJEK-TE, wechseln Sie in das Register EIB (für externe KOs) und wählen in der Werkzeugleiste die Funktion IMPORTIEREN • OPC-DATEI IMPORTIEREN.
- 3. Geben Sie den Pfad zur exportierten *.esf*-Datei vor (Feld: DATEINAME) und lassen Sie die restlichen Checkboxen deaktiviert.

Nach wenigen Sekunden sind dem HS Experten bereits alle Ihre EIB-Objekte bekannt, Sie finden Ihre komplette Gruppenadressenstruktur (siehe Abbildung 48.8) inklusive der von der ETS importierten Datentypen vor:

🗅 Kommunikationsobjekte 📃 💷 💌				
Datei Extras Hilfe				
Schließen	n 🔍 S <u>u</u> chen 🎯 <u>H</u> ilfe			
HS Intern II EIB	Daten			
EIB-Objekte	Bezeichnung:	Wetter Temperatur aussen		
⊕ 01 Dosen	Datentyp:	16-Bit (-671088,64670760,96/EIS 5)		
⊕ 02 Jalousien	Remanentspeicher:	Ja, Kommunikationsobjekt remanent speichern.		
O3 Heizung	InitWert:	0		
0 Wetter Temperatur	Min. Wert:	-671088		
	Max. Wert:	670760		
	Schrittaröße:	0		
🗈 💼 3 Wetter Regen	Lister			
the set of the s	LISIC.	I		
	Gruppenadresse:	4/0/0		
	Beim Starten abfragen:	□ Ja		
⊕	Nur bei Änderung senden:			
⊕	Leve-Flag:			
⊕ ⊕ 09 Heizungsaktoren	Lesen idg.			
10 Schalter	Ubertragen-Flag:	I∕ Ja		
12 Anzeigen	KO-Gateway empfangen:	🗖 Ja		
13 Sensoren	KO-Gateway senden:	□ Ja		
🕀 💼 14 Multimedia				
I 15 Zentral				

Abbildung 48.8 Die von der ETS importierten externen Kommunikationsobjekte

Die Attribute der Kommunikationsobjekte

Die Detailinformationen, die Sie zu jedem KO auf der rechten Fensterseite erhalten, sind teilweise selbsterklärend, teilweise aber auch missverständlich. Die folgende Tabelle 48.3 geht kurz auf die Attribute ein, für interne KOs sind davon nicht alle verfügbar:

Attribut	Beschreibung
Bezeichnung	Name des KO (selbst vergeben oder aus der ETS impor- tiert).
Datentyp	Der Datentyp des KO (selbst vergeben/importiert).
Remanentspeicher	Gibt an, ob dieses KO in einem nicht flüchtigen Spei- cher des HomeServers abgelegt werden soll (siehe dazu Abschnitt 48.2.4).
InitWert	Der HS belegt KOs, die nicht vom KNX-Bus gelesen wer- den konnten oder sollten, mit diesem Initialwert.
Min. Wert	Minimum- bzw. Maximumwert des KO, abgeleitet aus
Max. Wert	dem Datentyp, kann aber verändert werden. Der HS begrenzt KOs, z. B. beim Schreiben auf den KNX-Bus, auf diese Grenzwerte.
Schrittgrösse	Eine Konstante, die von einem Befehl verwendet wird, um z. B. einen Dimmaktor um 20 % zu erhöhen oder zu verringern,
Liste	Dient dazu, einen Aktorausgang nur auf bestimmte in einer Liste festgelegte Werte zu setzen. Format: z. B. 0,10,20,50,100. Ausgangswerte werden an den in der Liste am besten passenden Wert angepasst.
GRUPPENADRESSE	 Die Gruppenadresse, in der Regel aus der ETS importiert. Erlaubt sind die zweistellige und die dreistellige Notation. Gültige Bereiche für interne GAs sind: zweistellige Notation: 100–199/0–2047 dreistellige Notation: 100–199/0–7/0–255
Beim Starten abfragen	Aktiviert: Der HS liest bei einem Neustart dieses Objekt aktiv vom KNX-Bus (Leseaufforderung). In der ETS muss das L-Flag (Lese-Flag) für dieses Objekt gesetzt sein, ansonsten verzögert sich der Start des HS erheblich (Wiederholung bei Fehler).
Nur bei Änderung senden	Wenn aktiviert, sendet es den Wert des KO auf den KNX, wenn dieser sich im HS geändert hat.
Lese-Flag	Aktiviert: Das KO kann aus dem HS von einem anderen KNX-Gerät ausgelesen werden, nicht zu verwechseln mit dem L-Flag, das in der ETS vergeben wird.

Tabelle 48.3 Die Attribute der Kommunikationsobjekte

Attribut	Beschreibung
Übertragen-Flag	Aktiviert: Alle Telegramme, die über den HS erzeugt werden, werden auch auf den Bus gesendet, nicht zu verwechseln mit dem Ü-Flag, das in der ETS vergeben wird.
KO-Gateway empfangen	Dieses KO kann von außen über das KO-Gateway geän- dert werden, Näheres dazu in Abschnitt 48.9.2.
KO-Gateway senden	Ein für dieses KO erzeugtes Telegramm wird auf das KO-Gateway gesendet, Näheres dazu in Abschnitt 48.9.2.

Tabelle 48.3 Die Attribute der Kommunikationsobjekte (Forts.)

48.2.3 Die Sache mit den Zentraladressen

Eine Zentraladresse (auch hörende Adresse genannt) ist eine wichtige Eigenheit von KOs im HomeServer Experten. Oftmals sind sie der Schlüssel zu Erfolg oder Misserfolg bei der Arbeit mit Rückmeldungen. Jedem KO können Sie eine oder mehrere Zentraladressen zuordnen, indem Sie mit der rechten Maustaste das Kontextmenü über einem KO in der Dialogbox KOMMUNIKATIONSOBJEKTE (und zwar im Register EIB) öffnen und dort den Punkt ZENTRAL-ADRESSE ANLEGEN auswählen. Wird nun vom HS ein Wert über eine Zentraladresse empfangen, werden alle EIB-Objekte, denen diese Zentraladresse zugewiesen wurde, auf den Wert des Zentralobjekts gesetzt. Der klassische Anwendungsfall dafür ist z. B. der visualisierte Lichtschalter, der seinen Zustand auch dann ändern soll, wenn irgendwo im Haus ein anderer Benutzer nicht über die Visualisierung des HS das Licht ein- oder ausschaltet (z. B. über einen konventionellen Taster oder einen Präsenzmelder).

Ein Praxisbeispiel zur Anwendung finden Sie später noch in Abschnitt 52.1.5, »Was hat es mit den Statusobjekten auf sich?«.

48.2.4 Remanente Kommunikationsobjekte

Eine nützliche Spezialität des HomeServers ist die Möglichkeit, externe und interne Kommunikationsobjekte (und auch andere Daten wie Zeitschaltuhren, Archive, Zähler, Kamerabilder usw.) *remanent* zu speichern. Remanent bedeutet, dass die Werte der KOs auch nach einem Spannungsausfall bzw. Neustart des HS wieder vorhanden sind. Es handelt sich dabei also um einen nicht flüchtigen Speicher (Flash). Da ein Flash-Speicher nicht für beliebig viele Schreibvorgänge ausgelegt ist, überträgt der HS alle remanenten Daten nur alle 15 Minuten in den *Remanentspeicher* – und auch nur dann, wenn sie sich

geändert haben. Ein paar nützliche Informationen über den Status des Remanentspeichers erhalten Sie über die Debug-Seiten des HS. In Abschnitt 48.9.1, »Die Debug-Seiten«, lernen Sie diese noch ausführlich kennen.

Ein typischer Anwendungsfall, der sich für remanente Datenspeicherung anbietet, wäre z. B. der Zählerstand eines Betriebsstundenzählers (Anzahl der Stunden, in denen ein Leuchtmittel eingeschaltet ist).

Vorsicht beim Update der HS-Firmware

Zwar überlebt der Remanentspeicher Spannungsausfälle, Neustarts und die Neuprogrammierung des HS, nicht aber ein Update der HomeServer-Firmware. Speichern Sie also auf jeden Fall die Daten im Remanentspeicher des HS, bevor Sie ein Firmware-Update durchführen. Die Funktion zum Sichern und wieder Zurückschreiben befindet sich im HS Experte-Menü HOMESERVER • REMANENTSPEICHER SICHERN bzw. REMANENT-SPEICHER HOCHLADEN.

48.3 Logiken erschaffen

Kommen wir zu einer der Hauptaufgaben des HomeServers, dem Ausführen beliebiger, selbst definierbarer *Logikfunktionen*. Diese Fähigkeit macht den HS zu einem mächtigen Automatisierungsrechner – anders gesagt, zu einer *Logik-Engine*. Die HomeServer Experte-Software stellt als Hilfsmittel einen grafischen Logikeditor zur Verfügung.

48.3.1 Erste Schritte im Logikeditor

Den grafischen Logikeditor (GLE) starten Sie über das gleichnamige Icon aus dem STAMMDATEN-Register im HS Experte-Arbeitsfenster. Der Editor öffnet sich in einem eigenen Fenster, das aus einer Menüleiste und drei Bereichen besteht. Links oben werden in einer Listenansicht alle erstellten Ordner und die darin enthaltenen Logikarbeitsblätter dargestellt. Aktuell ist diese Liste noch leer, lediglich der Ursprungsknoten namens *Logik* wartet bereits. Darunter, in der Rubrik *Bausteine*, finden Sie einen kategorisierten Katalog aller Logikbausteine, die Sie in eigenen Logikfunktionen verwenden können. Diese Logikfunktionen legen Sie auf Arbeitsblättern an, die in der rechten Fensterhälfte geöffnet werden.

Erstellen wir gemeinsam eine erste kleine Logikfunktion. Öffnen Sie dazu mit der rechten Maustaste das Kontextmenü über dem obersten Logikknoten mit der Bezeichnung *Logik* und wählen Sie den Menüpunkt ORDNER ANLEGEN. Dem Ordner geben Sie einen Namen (z. B. »Erste Schritte«) und öffnen wiederum das Kontextmenü über dem neu erzeugten Ordner-Icon ERSTE SCHRITTE. Selektieren Sie im Kontextmenü ARBEITSBLATT ANLEGEN, geben Sie dem Arbeitsblatt einen Namen (hier: »Erste Logik«), wählen Sie als

BLATTGRÖSSE den Wert MITTEL und bestätigen Sie die Dialogbox mit OK. Schon besitzen Sie ein erstes Arbeitsblatt (Abbildung 48.9), das auch bereits geöffnet wurde und mit einer EINGANGS-BOX und einer AUSGANGS-BOX ausgestattet ist:

Grafischer Logikeditor - - X <u>D</u>atei <u>A</u>nsicht <u>H</u>ilfe Schließen Neu 🖷 Entfernen 🥘 Hilfe 🖃 🚰 Logik Γ Erste Schritte Erste Logik Bausteine *1 × ⊡~ 0 Logik Elemente Ausgangs-Box Eingangs-Box -Rbt Textfeld Ausgangs-Box (ID:580) Eingangs-Box (ID:579) - 😥 Vorlage 🗄 🛅 Bausteine 🗄 🕋 Alarmierung 🗄 🛅 Auswahlschalter DALI und Lichtsteuerung + Datenaustausch 🗄 🛅 DTMF . ⊕ - @ Filter 🗄 🦳 Gatter 🗄 🛅 Heizung-Lueftung-Klima 🗄 🛅 Jalousie-Rolladen-Trennwand 🗄 🦳 Math. Funktionen 🗄 🔚 Math. Funktionen Kurven 🗄 🛅 Math. Funktionen Trigonometrie 🗄 💼 Math. Grundfunktionen 🗄 🦳 Regler E 💼 Textfunktioner E-m Türkommunikation i derzögerung 🗄 🛅 Wandler 🗄 💼 Weitere Bausteine 🗄 🛅 Zeit-Funktionen 🗄 🦳 Zähler -bin Binär-Auslöser - 010 Sperre Post 480 x 242

Abbildung 48.9 Ein leeres Arbeitsblatt im grafischen Logikeditor

Die Eingangsbox ist essenzieller Bestandteil jeder Logikfunktion. Eine sinnvolle Logikfunktion benötigt immer einen oder mehrere Eingangswerte, die nicht einfach aus dem Nichts in das Arbeitsblatt gelangen, sondern über eine Eingangsbox. Diese besitzt am rechten Rand ein kleines Plussymbol, über das beliebig viele Eingänge hinzugefügt werden können. Probieren Sie es aus. Nach dem Klick öffnet sich die bekannte Dialogbox für Kommunikationsobjekte, mit deren Hilfe Sie ein externes oder internes KO auswählen. Die Auswahl erfolgt am schnellsten durch einen Doppelklick auf das gewünschte Kommunikationsobjekt. Falls das (interne) KO, das Sie gern als Eingang in Ihrer Logikfunktion verwenden möchten, noch gar nicht existiert, können Sie es in der Dialogbox für Kommunikationsobjekte direkt anlegen. Genau das führen wir für das Einführungsbeispiel durch.

48.3.2 Vorbereitungen zur ersten Logikfunktion

Legen Sie im Editor für Kommunikationsobjekte bitte vier interne KOs an, und zwar im Sinne der Übersichtlichkeit in einen eigenen Order namens *Logik-Test*:

- ► BEZEICHNUNG: Außentemperatur, DATENTYP: 16 Bit, EIS5
- ► BEZEICHNUNG: Innentemperatur, DATENTYP: 16 Bit, EIS5
- ► BEZEICHNUNG: Lüften, DATENTYP: 1 Bit
- ► BEZEICHNUNG: Sommer, DATENTYP: 1 Bit

Bei Ihnen sollte das wie in Abbildung 48.10 aussehen:

🚹 Kommunikationsobjekte		
<u>D</u> atei <u>E</u> xtras <u>H</u> ilfe		
Ü <u>b</u> ernehmen <u>S</u> chließen ■ Importi	eren 🛛 🗋 <u>N</u> eu 🖶 Entfer	nen 🔍 S <u>u</u> chen 🞯 <u>H</u> ilfe
	Daten Bazeichnung:	
Logik-Test	Datentyp:	16-Bit (-671088,64670760,96/EIS 5)
- 1995) Innentemperatur - 1995 Lüiten - 1995 Sommer 1997 - System	Hemanentspeicher: InitWert: Min. Wert: Max. Wert:	Ja, Kommunikationsobjekt remanent speichern. 0 -671088 670760
	Schrittgröße: Liste: Gruppenadresse: KO-Gateway empfangen:	0
	KO-Gateway senden:	□ Ja

Abbildung 48.10 Anlegen der internen KOs für die erste Logikfunktion

Was könnte man mit diesen vier Signalen nun anfangen? Unsere kleine Beispiellogik soll Folgendes umsetzen: Beträgt die Außentemperatur mindestens 2 Grad weniger als die INNENTEMPERATUR, soll für 5 Minuten der Ausgang LÜFTEN auf 1 (also aktiv) geschaltet werden, bevor er anschließend wieder auf O (inaktiv) zurückfällt. Der LÜFTEN-Ausgang soll allerdings nur im Sommer aktiv werden (Eingang SOMMER = 1), im Winter wird er nicht benötigt.

Anlegen der Ein- und Ausgangsboxen

Die drei Eingänge AUSSENTEMPERATUR, INNENTEMPERATUR und SOMMER legen Sie in eine oder mehrere Eingangsboxen, funktional macht das keinen Unterschied (Abbildung 48.11). Den Ausgang der Logik platzieren Sie, indem Sie das Plussymbol in der Ausgangsbox einmal anklicken, worauf eine Dialogbox AUSGANG/BEFEHLE BEARBEITEN geöffnet wird. Betätigen Sie den Auswahl-Button (drei Punkte) in der Zeile KOMMUNIKA-TIONSOBJEKT und suchen Sie im Kommunikationsobjekt-Editor das interne KO namens LÜFTEN. Schließen Sie die Dialogboxen mit ÜBERNEHMEN bzw. OK, worauf das Ausgangs-KO in der Ausgangsbox erscheint.

Eingangs-Box (ID:3058) • Außentemperatur ein Innentemperatur ein		_ -terr	usgangs-Box (ID:3059 :Lüften) •
	Ausgang / Befehle bearb	eiten		×
Eingangs-Box (ID:3064) •	Bezeichnung:			
Sommer 10	Kommunikationsobjekt:	Lüften		
	Befehle:	Beschreibung		
				472
				企
				÷
		1		
			Qk	Abbrechen

Abbildung 48.11 Die Eingänge und Ausgänge sind platziert.

Nachdem das Interface unserer Logik abgegrenzt ist, gilt es, diese zu implementieren.

Einfügen der Logikbausteine

Alle verfügbaren Bausteine finden Sie im grafischen Logikeditor in der Baumansicht im linken Fensterbereich, gruppiert nach Einsatzzweck. Einen Baustein fügen Sie einfach in Ihr Arbeitsblatt ein, indem Sie ihn mit der Maus hineinziehen. Wir benötigen für die Umsetzung der Logik folgende Bausteine:

- ► KLEINER GLEICH (aus dem Ordner Vergleicher)
- ► SUBTRAKTION (aus dem Ordner Math. Grundfunktionen)
- ► UND, 2 EING (aus dem Ordner *Gatter*)
- ► TREPPENHAUSLICHT (aus dem Ordner Weitere Bausteine)

Wundern Sie sich nicht über den namentlich unpassend erscheinenden Baustein TREP-PENHAUSLICHT, er ist sehr gut geeignet, um eine zeitlich begrenzte Schaltung (in unserem Fall das Setzen von LÜFTEN=1 für 5 Minuten) umzusetzen.

Sie haben jetzt vier unverbundene Logikbausteine in Ihr Arbeitsblatt aufgenommen. Im nächsten Schritt müssen diese sinnvoll miteinander kombiniert werden. Vorher aber sehen wir uns an, wie ein Logikbaustein überhaupt aufgebaut ist.

Ein Logikbaustein im Detail

Ein Baustein besitzt immer einen Überschriftenblock, in dessen erster Zeile ein aussagekräftiger Text eingegeben werden sollte (mit rechter Maustaste auf die Überschrift klicken und Funktion EIGENSCHAFTEN wählen). Die zweite Zeile gibt den unveränderlichen Namen des Bausteins an.

Abbildung 48.12 Ein UND-Gatter mit frei vergebener Bezeichnung

Bei dem in Abbildung 48.12 abgebildeten Baustein handelt es sich um ein einfaches UND-Gatter mit zwei Eingängen. Die Funktionsweise der diversen Gatter wird im Grundlagenkapitel (siehe Abschnitt 6.1, »Einfache Logikfunktionen«) erläutert.

Eingänge (hier E1 und E2) befinden sich bei allen Bausteinen links, Ausgänge (hier A1 bis A4) immer rechts.

Send-Ausgänge und Send-by-Change-Ausgänge

Außer dem offensichtlichen Ausgang A1, der die Logikverknüpfungen E1 und E2 ausgibt, existieren bei dem UND-Gatter noch drei weitere Ausgänge. Die meisten anderen Logikbausteine aus der Bibliothek verwenden ebenfalls diese Zusatzausgänge, daher stelle ich sie kurz vor:

- ► A2 NEG: Enthält immer den invertierten (negierten) Zustand von A1 und erspart Ihnen oft den Einsatz eines NOT-Gatters.
- ► A3 (SBC): Während Ausgang A1 (und A2) bei jeder Änderung der Eingänge ein Telegramm am Ausgang erzeugt, generiert ein *sbc*- Ausgang (*send by change*) nur dann ein Telegramm, wenn sich der Ausgang ändert. Das ist ein wichtiger Unterschied.
- ► A4 NEG (SBC): Wie A3, aber negiert.

Die beiden grünen 1-Werte an den Eingängen repräsentieren die Default-Werte. Immer dann, wenn ein Eingang nicht angeschlossen ist, nimmt er diesen Default-Wert an. Sie können ihn durch einen Doppelklick darauf nach Ihren Anforderungen anpassen. Wenn Sie sich etwas in digitaler Schaltungstechnik auskennen, kommt Ihnen vielleicht der Vergleich mit einem Pull-up- oder Pull-down-Widerstand in den Sinn. Das ist korrekt, genau so verhalten sich die Eingänge mit Default-Wert auch.

Die Hilfefunktion zu Bausteinen

Mit Ihr bester Freund wird die eingebaute Hilfefunktion zu den Logikbausteinen werden (Abbildung 48.13). Klicken Sie mit der rechten Maustaste auf einen Baustein und wählen das Menü HILFE ZUM BAUSTEIN, erhalten Sie eine Kurzbeschreibung der Funktion inklusive der Bedeutung der Ein- und Ausgänge.

Hilfe / Logik / UND, 2	Eing / Eingä	inge / <u>Ausgänge</u>	
Beschreibung Dieser Baustein bietet alle Eingänge einen W	die Möglich ert !=0 (ung	nkeit der UND-Verknüpfung von 2, 4 gleich Null) haben, ist das Ergebnis 1	oder 8 Eingängen. W I.
Eingänge			1
Eingang 1	Init 1	Hier wird das erste Kommunikationsobjekt	
Eingang 2	1	Hier wird das zweite Kommunikationsobjekt zugeordnet.	-
Ausgänge			-
Ausgang	Init	Beschreibung	
Ausgang 1 (Send)	0	Hier wird das Verknüpfungsergebnis der Eingänge ausgegeben. Ausgegeben wird ein 1-bit- Wert.	
Ausgang 2 (negiert Send)	0	Hier wird das negierte Verknüpfungsergebnis der Eingänge ausgegeben. Ausgegeben wird ein 1-bit- Wert.	-
Ausgang 3 (Send by Change)	0	Hier wird das Verknüpfungsergebnis der Eingänge ausgegeben. Ausgegeben wird ein 1-bit- Wert. Ausgang sendet nicht bei Neustart.	-
Ausgang 4 (negiert Send by Change)	0	Hier wird das negierte Verknüpfungsergebnis der Eingänge ausgegeben. Ausgegeben wird ein 1-bit- Wert. Ausgang sendet nicht bei Neustart.	
Sonstiges Neuberechung bei Sta Baustein ist Remaneni Interne Bezeichnung: { Der Baustein wird im '	rt: Ja t: Nein 9002 'Experten'' ii	n der Kategorie "Gatter" einsortiert	of and a second s

Abbildung 48.13 Hilfe zum UND-Logikbaustein

48.3.3 Verbinden der Logikbausteine

Rufen Sie sich kurz nochmals die Aufgabenstellung ins Gedächtnis: Beträgt die Außentemperatur mindestens 2 °C weniger als die Innentemperatur, soll für fünf Minuten der Ausgang Lüften auf 1 geschaltet werden, aber nur im Sommer.

Wenn Sie die bereits platzierten Bausteine richtig verbinden, ergibt sich die Logik aus Abbildung 48.14.

Die Verbindungen zwischen Ein- und Ausgängen ziehen Sie einfach mit der Maus. Die grafische »Schönheit« spielt dabei nur eine kosmetische Rolle, auf die Funktion hat sie keinen Einfluss. Verbindungen zu lösen, ist ebenso einfach. Es genügt ein Rechtsklick auf einen verbundenen Eingang oder Ausgang und die Auswahl der Kontextmenüfunktion VERBINDUNG(EN) LÖSEN. Eine bestehende Verbindung können Sie über dasselbe Kontextmenü auch jederzeit invertieren (VERBINDUNG(EN) NEGIEREN). Grafisch sichtbar ist eine Negierung durch einen kleinen schwarzen Punkt am Eingang.

Abbildung 48.14 Die fertige Logik

Für konstante Werte, wie z. B. den Wert 2 bei der Subtraktion oder den Wert 300 (5 Minuten) bei der Treppenhauslichtfunktion, benötigen Sie keine extra internen KOs, sondern können direkt die Werte für die Eingänge vorgeben. Ein Doppelklick auf den Eingang genügt.

Was genau bewirkt nun dieses Logikkonstrukt? Von links nach rechts passiert Folgendes: Zur Außentemperatur wird der Wert 2 addiert und das Ergebnis mit der Innentemperatur verglichen. Ist es kleiner oder gleich der Innentemperatur und ist das interne KO Sommer = 1, wird eine logische 1 auf den Objekteingang (E2) der Treppenhauslichtfunktion gelegt. Diese sorgt dafür, dass ihr Ausgang A3 für 300 Sekunden den Wert 1 annimmt. Da der Treppenhauslichtbaustein im Gegensatz zu den anderen verwendeten Bausteinen nicht trivial ist, lohnt es sich, die eingebaute Hilfefunktion für diesen auszuprobieren.

In dieser Logikfunktion werden nur interne KOs, sowohl an den Eingängen als auch an den Ausgängen, verwendet. Damit hat die Logik keine (direkte) Auswirkung auf Teilnehmer am KNX-Bus. Offensichtlich passiert also gar nichts. Mir war jedoch wichtig, dass Sie das Konzept hinter einer Logik verstehen, und dafür eignet sich eine Funktion ohne Abhängigkeit von anderen KNX-Teilnehmern am besten. Der nächste Schritt – für diese Funktionalität eine tatsächliche, greifbare Auswirkung zu erzielen – ist einfach. Dazu ersetzen Sie lediglich die internen KOs durch externe KOs:

- ► Aus Außentemperatur wird ein externes KO, von einer KNX-Wetterstation produziert.
- ► Die Innentemperatur ersetzen Sie durch einen realen Sensorwert, z. B. von einem KNX-Raumtemperaturregler.

- ► Das KO Sommer könnte ein internes KO bleiben und z. B. aus einer anderen Logikfunktion stammen.
- in der Ausgangsbox ersetzen Sie das iKO Lüften z. B. durch das Schaltobjekt eines KNX-Aktors für eine Hinweisbeleuchtung, oder Sie schalten über die Ausgangsbox direkt einen Fensterantrieb, der die Lüftung umsetzt.

48.3.4 Der Test der Logikfunktion

Das Erstellen einer einfachen Logik ist hiermit schon fast erledigt, es fehlt lediglich noch der Test. Leider, und das steht auf meiner persönlichen Wunschliste für eine neue HomeServer-Version ganz oben, bietet der HS Experte keinerlei Simulationsmöglichkeit. Somit bleibt nur, den HomeServer nach jeder Änderung neu zu programmieren, was recht zeitaufwendig ist. Mildernd wirkt nur, dass Sie mit der Zeit immer sicherer im Umgang mit Logiken werden, weniger Fehler machen und den HS seltener neu programmieren müssen.

Ich möchte an dieser Stelle bereits zwei wertvolle Helfer nennen, denen Sie in den Abschnitten 48.9.2, »Interne Kommunikationsobjekte beobachten mit qHSMon«, und 48.9.3, »Statusausgaben im QuadClient«, noch detailliert begegnen werden: Wertanzeige bzw. Wetterstation und qHSMon. Beide helfen Ihnen, vor allem bei Problemen mit Logikfunktionen, den Durchblick zu behalten.

48.3.5 Wichtige Logikbausteine

Aus der großen Zahl an verfügbaren Logikbausteinen benötigen Sie ein paar immer wieder. Sehen Sie hierzu Tabelle 48.4:

Baustein	Einsatz
ODER, UND, XODER (Ordner: <i>Gatter</i>)	Werden für alle Arten von logischen Ver- knüpfungen benötigt, es stehen jeweils Gatter mit 2, 4 oder 8 Eingängen zur Verfü- gung.
Addition, Division, Multiplikation, Sub- traktion (Ordner: <i>Math. Grundfunktionen</i>)	Werden benötigt, sobald gerechnet wer- den soll (Skalierung, Einheiten umrechnen usw.).
Text zusammensetzen (Ordner: <i>Text-Funktionen</i>)	Gut geeignet, um für eine Visualisierung den Wert mit einer Einheit zu verknüpfen (z. B. 5,6 m/s).

Tabelle 48.4 Übersicht: essenzielle Logikbausteine

Baustein	Einsatz
Gleich, Grösser (gleich), Kleiner (gleich), Ungleich (Ordner: <i>Vergleicher</i>)	Elementare Vergleichsfunktionen, können in gewisser Art mit if-Anweisungen klassi- scher Programmiersprachen verglichen werden.
Ein-/Ausschaltverzögerung (Ordner: <i>Verzögerung</i>)	Gut geeignet, um einen zeitlichen Ablauf zu entwerfen.
INTTOSTRING, STRINGTOFLOAT und Ähnliche (Ordner: <i>Wandler</i>)	Zahlen in Zeichenketten umwandeln und umgekehrt, oft wichtig für Visualisierun- gen.
RS-FLIPFLOP (Ordner: <i>Weitere Bausteine</i>)	Setzen und Rücksetzen eines Werts (siehe Abschnitt 6.2).
TREPPENHAUSLICHT-FUNKTION (Ordner: <i>Weitere Bausteine</i>)	Zur Ansteuerung eines Ausgangs mit zeitlicher Begrenzung.
Waтснdog (Ordner: <i>Weitere Bausteine</i>)	Sinnvoll bei der Überwachung, ob bestimmte KNX-Telegramme innerhalb einer vorgegebenen Zeit empfangen wer- den können.
Betriebsstundenzähler (Ordner: <i>Zähler</i>)	Dient der Erfassung von Zeiten, z.B. der Brenndauer einer Beleuchtung (der Bau- stein ist sinnvollerweise remanent).
Binärauslöser	Oft unterschätzt, aber unerlässlich: Führt einen oder mehrere HS-Befehle aus, wenn ein neues Telegramm am Eingang eintrifft.

Tabelle 48.4 Übersicht: essenzielle Logikbausteine (Forts.)

48.3.6 Befehle für die Ausgangsbox

Die Ausgangsbox wird nicht nur dazu verwendet, ein internes oder externes KO auf einen bestimmten Wert (nämlich den an die Ausgangsbox herangeführten) zu setzen, sie kann zudem auch verschiedene sogenannte *Befehle* auslösen.

Wie das Setzen eines KO in der Ausgangsbox funktioniert, haben Sie bereits in Abschnitt 48.3.2, »Vorbereitungen zur ersten Logikfunktion«, kennengelernt. Einen Befehl fügen Sie nahezu in der gleichen Art und Weise hinzu. Klicken Sie wiederum auf das Plussymbol, selektieren Sie dann aber kein Kommunikationsobjekt, sondern fügen Sie einen neuen Befehl wie in Abbildung 48.15 hinzu.

Ausgang / Befehle	pearbeiten	X
Bezeichnung:		
Kommunikationsobje	kt: [[Keine Auswahl]	×
Befehle:	Beschreibung	
Bearbeiten/Hinzufügen		
Befehls-Typ:	Schalten/Abfragen	B [
Kommunikationsobjekt: Typ:	Schalten/Abfragen Daten per E-Mail versenden Kamerabild archivieren In Archiv eintragen	Û Û
Konstante:	Daten per FTP versenden Zeit/Datum senden Segulenz	
Kommunikationsobjekt.	Visu-Alarm auslösen Visu-Alarm auslösen Alarm auslösen (E-Mail, SMS, Anruf, Push-Notification) IP/EIB-Telegramm senden / Web-Seite/IP-Gerät auswerten Dimmen SINMP-Trap senden WakeOnLAN EIB scannen Gerät neu starten	
Hilfe	QkAbbrechen	

Abbildung 48.15 Auswahl des Befehlstyps für eine Ausgangsbox

Eine Ausgangsbox darf mehr als nur einen Befehl pro Ausgang beinhalten, ebenso auch selbst mehrere Ausgänge. Die folgende Abbildung 48.16 zeigt eine Ausgangsbox mit zwei Ausgängen, wovon der erste drei Befehle enthält. Diese drei Befehle werden vom HS immer dann abgearbeitet, wenn über den zugehörigen Ausgang ein Telegramm mit dem Wert ungleich null gesendet wird.

aktiv text	Ausgangs-Box (ID:3080) Gurmehrere Befehle in einem Ausgang S betchile) mehrere Befehle in einem Ausgang 1 Betehile) 1 Betehile)
Ausgang / Befehle bearl Bezeichnung:	peiten 💽 💽
Kommunikationsobjekt: Befehle:	[Keine Auswahl] X Beschreibung Setzer DALI Schatten A04 Wohnzimmer, 5/0/50' auf Konstante 1 Setze 'DALI Dimmwert A07 Kochinsel blau. 5/1/0' auf Konstante 50
	<u></u>

Abbildung 48.16 Ausgangsbox mit mehreren Befehlen und mehreren Ausgängen

48.3.7 Grundsätzliches zu HS-Logikfunktionen

Bei der Arbeit mit HomeServer-Logiken ist das Verständnis der Grundprinzipien, nach denen die Logikmaschine arbeitet, wichtig. Sehen wir uns ein paar Interna an.

Die Logik ist ereignisgesteuert

Der HomeServer als Logikmaschine arbeitet grundsätzlich *ereignisgesteuert* und *nicht zyklisch*. Das heißt, dass bei jedem Eintreffen eines Telegramms betroffene Logikbausteine neu berechnet werden. Das betrifft auch alle weiteren Bausteine, die durch diese Neuberechnung geänderte Eingangswerte sehen. Zeitgesteuerte Bausteine werden nach Ablauf der eingestellten Zeit neu berechnet. Während des Betriebs besitzt der HS ständig ein komplettes *Prozessabbild* des KNX-Bus (sowie der internen KOs), sodass das explizite Abfragen einzelner Gruppenadressen in der Regel nicht notwendig ist.

Die Anzahl der Ausgangstelegramme wird automatisch begrenzt

Da der HomeServer technisch gesehen so viele KNX-Telegramme quasi gleichzeitig senden könnte, dass der Bus überlastet wäre, besitzt er eine feste Maximalrate von 20 KNX-Telegrammen pro Sekunde. Voreingestellt ist die Obergrenze von sechs Telegrammen pro Sekunde, die Sie bei Bedarf in den Projekteinstellungen (STAMMDATEN • PROJEKT • EIB & IETS • TELEGRAMME/SEKUNDE) verändern können.

Bedeutung von wahr und falsch

In Logikfunktionen wird zwischen den Zuständen *wahr* und *falsch* unterschieden, die Bedeutung ist folgende:

- ► Logisch falsch entspricht einem Telegramm mit dem Wert *null*.
- Logisch wahr sind alle Telegramme mit einem Wert ungleich null (also auch negative Werte).

48.3.8 Noch mehr Möglichkeiten: Externe Logikbausteine und Funktionsvorlagen

Natürlich sind Sie nicht nur auf den Einsatz der bereits vorhandenen Logikbausteine angewiesen. Der HS Experte hält zwar viele Bausteine für Sie bereit, aber so manch kompliziertere Aufgabenstellung können Sie nur lösen, wenn Sie externe Bausteine importieren.

Eine kleine Auswahl an weiteren Logikbausteinen und Funktionsvorlagen

Das KNX-User-Forum.de stellt eine komplette Datenbank an kostenlos importierbaren Bausteinen bereit, von denen ich Ihnen in einer Übersicht in Tabelle 48.5 ein paar interessante herausgepickt habe. An dieser Stelle: herzlichen Dank an die Entwickler der

Bausteine. Die Downloads finden Sie unter http://service.knx-user-forum.de/?comm= download.

Nummer und Autor	Logikbaustein bzw. Funktionsvorlagen	Funktion
11721 Marc Naroska	Rollladensteuerung	 komplette Steuerung einzelner Roll- laden in Kombination mit: 11724 (Multi-Beschattung) 19820 (Sonnenstand) 11722 (Rollladen mit Positionie- rung)
11885 Alexander Kirpal	Alarmzentrale	kommerzieller Baustein für kom- plette Gebäudeüberwachung (siehe Abschnitt 58.1)
12122 Friedel Kehne	DTMF Anrufalarmierung	Anwahl einer Liste von Telefonnum- mern mit variabler Bestätigung im Fall einer Alarmierung
12242 Nils Stöver	Hostcheck	sendet zyklischen ICMP-Ping an belie- bige IP-Adresse, um herauszufinden, ob das adressierte Gerät in Betrieb ist; ermittelt außerdem die Antwortzeit in ms
12263 Nils Stöver	Prowl	sendet Prowl-Nachrichten
12269 Nils Stöver	FritzBox-CallMon	verbindet sich mit einer FRITZ!Box und sendet die Gesprächsdaten im CALLINFO-Protokoll
12272 Nils Stöver	FritzControl (WLAN)	WLAN der FRITZ!Box ein-/ausschalten (und noch viel mehr mit der Version 0.8, Link: http://knx-user-forum.de/ forum/öffentlicher-bereich/knx-eib- forum/6763-wie-fritzbox-anrufliste- abfragen-mit-sessionid)
12290 Tilo Kühn	Anzahl ungleich 0	zählt die Anzahl der Eingänge (max. 8), an denen ein Wert ungleich 0 anliegt; sehr praktisch z. B. für das Zählen der offenen Fenster einer Etage

 Tabelle 48.5
 Auswahl externer Logikbausteine und Funktionsvorlagen

Nummer und Autor	Logikbaustein bzw. Funktionsvorlagen	Funktion
12299 Holger Eckert	Squeeze	 Squeezebox-Player können über den Baustein direkt gesteuert und deren Status kann vom HS empfangen wer- den, in Verbindung mit: 13310 (Squeeze_Player-Befehl) 13311 (Squeeze_Player-Status), beide von Klaus Muckelmann, 100357 (Template Steuerung) von Reinhard Socha
17579 Gaston Gloesener	Betriebsstundenzähler	komfortabler Betriebsstundenzähler, u. a. mit Reset, Sollwert und Flags-Ein- gang
19042 Holger Schwing- hammer	Wind-Universalbaustein	Wandelt gemessene Windstärke in mehrere Einheiten um (Beaufort, Knoten, Text, m/s, km/h usw.).
19822 Matthias Schmidt	Jalousie Lamellennach- führung	 sehr interessanter Baustein für eine sonnenstandsgeführte Lamellen- nachführung in Kombination mit: 19820 (Sonnenstand pur) 19821 (Beschattung1)
100345 Matthias Scholl	Müllterminanzeige für den QC (Funktionsvor- lage)	bis zu drei Mülltonnensymbole und ein Wochentag im QuadClient anzei- gen, arbeitet mit externen Schalt- listen

 Tabelle 48.5
 Auswahl externer Logikbausteine und Funktionsvorlagen (Forts.)

Logikbausteine importieren

Im HS Experten importieren Sie einen externen Logikbaustein ganz einfach. Die heruntergeladene Datei ist meist vom Typ *.hslz*. Benennen Sie diese Datei in *.zip* um und öffnen Sie das Zip-Archiv. Darin befindet sich der Baustein selbst (*.hsl*) sowie eine oder mehrere Textdateien als Beschreibung. Die *.hsl*-Datei importieren Sie über das HS Experte-Menü LOGIKBAUSTEINE • IMPORTIEREN. Speichern Sie Ihr Projekt und öffnen Sie dann den GLE. Der neue Baustein sollte anschließend verwendbar sein. Wo er im Bausteinbaum einsortiert wird, ist oft der Beschreibung zu entnehmen, ansonsten hilft nur suchen.

Funktionsvorlagen importieren

Eine Funktionsvorlage ist ein vordefiniertes Bedienelement für den QuadClient, das Sie über einen oder mehrere Parameter an Ihre eigenen Bedürfnisse anpassen können. In oben stehender Tabelle finden Sie die Müllterminanzeige als Beispiel. Eine Funktionsvorlage laden Sie als *.hst*-Datei herunter, die Sie im Experten über das Menü QUAD-CLIENT • FUNKTIONSVORLAGEN IMPORTIEREN in Ihr Projekt aufnehmen können. Wenn Sie nach dem Import das nächste Mal im QuadConfig-Editor vorbeisehen, finden Sie die neue Vorlage bereits vor (die Müllterminanzeige wird z. B. in das Verzeichnis *Sonstige* einsortiert).

48.4 Webseiten abfragen und auswerten

Der HomeServer besitzt in Form der KOs und iKOs ständig die Kenntnis über den aktuellen Gesamtzustand Ihres Bussystems (das Prozessabbild). Wäre es jetzt nicht toll, wenn Sie jede Art von Information, die irgendwo in den Weiten des Internets vorhanden ist, ebenfalls für Ihre Gebäudesteuerung heranziehen könnten? Bestimmt ist das toll, ich gebe Ihnen auch Beispiele, warum:

- Verwendung von Wettervorhersagen
 - kein Aktivieren der Gartenbewässerung oder des Mähroboters, wenn Regen vorausgesagt ist
 - Einfluss auf die Steuerung Ihres Wärmeerzeugers
 - Visualisierung, ob die eben gewaschene Wäsche draußen aufgehängt werden soll oder nicht
 - Unwetterwarnung, Schließen der Fenster bei Pollenflugvorhersage
- Anzeige der aktuellen Benzinpreise und der billigsten Tankstelle im Umfeld
- Anzeige von Aktienkursen oder Indizes (dazu finden Sie auch ein Praxisbeispiel in Abschnitt 62.2, »Aktienkursabhängige Beleuchtungssteuerung«)
- ► Tausende weiterer sinnvoller und abgefahrener Anwendungsbeispiele

Auch wenn Sie die gewonnenen Informationen nicht zwangsweise in nachgeschalteten Logikfunktionen weiterverarbeiten müssen, so ist es in vielen Fällen dennoch praktisch, sie einfach nur über eine Visualisierung anzeigen zu lassen.

Eine *Webabfrage* (bzw. *Webseitenabfrage*) ist theoretisch in der Lage, jede Information, auf die Sie per HTTP zugreifen können (also über den Webbrowser), in Ihre Gebäudesteuerung zu holen. Dabei spielt es keine Rolle, ob die Webseite innerhalb Ihres Netzwerks abgelegt ist oder irgendwo da draußen. Die Webabfrage transferiert eine externe Information in ein internes Kommunikationsobjekt (iKO), das Sie mit dem HomeServer beliebig weiterverarbeiten können. Für das Erstellen und Einbinden einer Webabfrage sind mehrere Arbeitsschritte erforderlich:

Kapitel 49 Multimedia-Software: mächtig und kostenlos

Sie lernen im folgenden Kapitel drei sehr leistungsfähige Multimedia-Softwareprojekte kennen: einen Audioplayer, ein komplettes Entertainment-Center und einen Videoserver. Das Beste: Alle drei sind kostenlos.

Die drei Softwarepakete, die ich Ihnen gern vorstellen möchte, bilden die Grundlage für ein leistungsfähiges Multiroom-Audiosystem (mit MPD) sowie einen Video-Streaming-Server (Tvheadend) mit Entertainment-Center (Kodi). Alle drei Lösungen funktionieren auch mit »kleiner« Hardware und sind ideal für den Smart-Home-Einsatz.

49.1 MPD – der Music Player Daemon

Der *MPD* (*Music Player Daemon*) von Linux, eine sehr stabile und ressourcenschonende Serversoftware für das Abspielen von Musik, ist ein wahres Multitalent und eignet sich ideal für die Integration in eine intelligente Gebäudesteuerung.

Anders als klassische Musikplayer folgt die MPD-Architektur einer strikten Trennung von Serveranteil und Benutzeroberfläche, die unterschiedlichste Formen annehmen kann, jederzeit auswechselbar ist und eine Fernsteuerung über ein Netzwerk ermöglicht. In folgender Abbildung 49.1 findet sich eine vereinfachte Darstellung solch einer Architektur.

Der MPD-Server funktioniert auch gut auf sehr leistungsschwacher Hardware, was Mini-Computer wie den Raspberry Pi ebenfalls einschließt. Die eigentliche Soundausgabe findet dabei auf dem Rechner selbst statt, auf dem MPD installiert ist, oder wird (z. B. über PulseAudio) auf ein anderes Gerät im Netzwerk weitergereicht. Clients können entweder ebenfalls auf diesem Rechner betrieben werden oder über die offen gelegte Schnittstelle von nahezu überall aus mit MPD kommunizieren.

Abbildung 49.1 Die MPD-Architektur (etwas vereinfacht)

49.1.1 Aufgaben des MPD-Servers

Was vermag der MPD-Server alles zu leisten? Jede Menge:

- Abspielen von unterschiedlichsten Audioformaten, z. B. FLAC, Vorbis, MP2, MP3, MP4/AAC, Mod und WAV, außerdem FFmpeg-Unterstützung.
- Verwalten einer zentralen Datenbank mit Audiodateien, Einlesen von Metadaten (ID3-Tags, Vorbis, MP4) und Organisieren von Playlists (Wiedergabelisten).
- Unterstützung von Streaming, wodurch die Audioausgabe auch auf anderen Rechnern wie dem Server selbst ermöglicht wird (z. B. FLAC-, MP3- und Ogg Vorbis-HTTP-Streams).
- Ermöglichen simultaner Mehrfachausgabe.
- Unterstützung von lokalen Clients oder Netzwerkclients (TCP) als Benutzerschnittstelle.
- Durch HTTP-Input-Streaming können auch Webseiten-URLs in die Playlist eingefügt werden.

- ► Bietet Komfortfunktionen wie:
- Replay-Gain (Audiodateien auf eine gemeinsame wahrgenommene Lautstärke anheben)
- Gapless Playback (unterbrechungsfreie, also lückenlose Wiedergabe)
- Crossfading (Überblenden zwischen zwei Kanälen)

49.1.2 MPD-Clients

In einer Client/Server-Architektur ist ein leistungsfähiger Serverteil schon mal die halbe Miete, für den komfortablen Einsatz bedarf es jedoch noch eines passenden Clients, der per Kommandozeile oder GUI mit dem Server kommunizieren kann. Für den MPD finden Sie weit mehr als 150 unterschiedlichste Clients (*www.mpd.wikia.com/wiki/Clients*), die folgende Übersicht in Tabelle 49.1 zeigt Ihnen ein paar besonders nützliche Vertreter:

Client	Beschreibung
МРС	Music Player Client: kommandozeilenbasierter Client, in C geschrieben, ideal für schnelle und skriptfähige Ansteuerung des MPD-Servers. Kann lokal oder remote betrieben werden.
ncmpc und pms	zwei leistungsfähige ncurses-basierte Konsolen- clients mit textueller GUI
MPoD und MPaD	Apps für iPhone/iPod touch bzw. iPad zur MPD- Bedienung durch Streaming über http
Droid MPD Client, MPRemote und MPDroid	drei gut gemachte grafische Clients für Android
gmpc	toller GTK+-basierter Gnome Music Player Client
Conky	keine echte GUI, sondern ein Systemmonitor für X mit vielen eingebauten Features, u. a. MPD-Support
Auremo und WpfMpdClient	zwei GUI-Clients für Windows
mpdlirc	MPD über Infrarotschnittstelle (LIRC) bedienen
SGWhatsPlaying	ein WordPress-Plug-in, das den gerade abgespielten Track in einer Blog-Sidebar zeigt
Music Player Minion	ein hübscher MPD-Client als Firefox-Extension
xbmc-mpdc	ein MPD-Client für XBMC

Tabelle 49.1 Eine Auswahl nützlicher MPD-Clients

Client	Beschreibung
Ampanche	sehr leistungsfähiges webbasiertes Musik-Manage- ment-System
MMPD	sehr interessanter Multi-MPD-Client (mehrere Instanzen von MPD mit mehreren Ausgabegeräten kombinieren)
mpdtoys	Sammlung von kleinen Kommandozeilentools für MPD (z. B. Fade-in/-out, MPD-Status zwischen ein- zelnen Daemons transferieren)

Tabelle 49.1 Eine Auswahl nützlicher MPD-Clients (Forts.)

[mpc4] GMPC			
<u>Music</u> <u>Control</u> <u>Server</u> <u>V</u> ie	w <u>O</u> ption <u>T</u> ools <u>G</u> o <u>H</u> elp		
• Not Playing		00:00	Prev Stop Play Next
Now Playing	Artist	O Daft Punk Discovery	<u> </u>
Play Queue	P!nk	Perchedulic Montal Manage Album:	Daft Punk
O Album View	Queen	Genres:	Electronica 2001 Play
Database	Rammstein	Songs: Playtime:	11 41 minutes 38 seconds
Search	Year Album	Placeter:	
Playlist Editor	2001 Discovery	 Album information Song list 	Web Links
Magnatune Browser		Not Available	
Jamendo Browser		Edit	
Genre Browser	Track Songs		
Artist Browser	2 Aerodynamic	=	
Metadata Browser	4 Harder, better, faster, stronger		
	5 Crescendolls		
		•	
	Title Album Mark Forster - Au Revoir	Artist	
			ca xx () (

Ein Beispiel daraus, den GTK+-basierten Client gmpc, sehen Sie in Abbildung 49.2.

Abbildung 49.2 Der gmpc-Client unter Windows

Übrigens: Möchten Sie gern selbst Software entwickeln, die MPD benutzen soll, finden Sie unter *www.mpd.wikia.com/wiki/Client_Libraries* jede Menge Client-Libraries für C/C++, .NET, Java, Python, Perl und viele mehr. Eine weitere gute Quelle ist die Hacksund Skriptsammlung, die teilweise gute Ideen für eigene Implementierungen liefern. Zu finden ist die Kollektion unter *www.mpd.wikia.com/wiki/Hacks*.

49.1.3 Die Installation von MPD und MPC

Die Installationsbeschreibung fällt angenehm kurz aus, unter Ubuntu ist lediglich ein einfaches

sudo apt-get install mpd mpc

notwendig, um sowohl den Server (MPD) als auch den Kommandozeilenclient (MPC) zu installieren. Die für die nächsten Schritte benötigte Konfigurationsdatei finden Sie nach der Installation in */etc/mpd.conf*. Diese öffnen Sie bitte direkt im Editor, um eine erste Anpassung an Ihre Umgebung vorzunehmen.

49.1.4 Den Service konfigurieren

Mit den in Tabelle 49.2 folgenden Einstellungen erhalten Sie bereits eine lauffähige Grundkonfiguration:

Einstellung in /etc/mpd.conf	Beschreibung
music_directory <pfad></pfad>	Definiert das Verzeichnis, in dem Sie Ihre Songs abge- legt haben, wobei darin enthaltene Unterverzeichnisse (z. B. Interpret/Album) natürlich erlaubt sind. Beispiel:
	<pre>music_directory "/media/sdb1/music"</pre>
playlist_directory <pfad></pfad>	Speicherort für Playlists, die über den MPD angelegt werden. Beispiel:
	playlist_directory "/media/sdb1/mpd/playlists"
db_file <pfad></pfad>	Über diesen Parameter geben Sie an, wo MPD die Datenbank ablegen soll. Beispiel: db_file "/media/sdb1/mpd/mpd.db"
log_file <pfad></pfad>	Ablageort für generierte Logfiles, die je nach eingestell- tem Log-Level sehr wertvoll für das Troubleshooting sind. Der Wert syslog als Pfad sorgt dafür, dass für das Logging der lokale syslog-Daemon verwendet wird. Bei- spiel: log_file "/media/sdb1/mpd/mpd.log"
pid_file <pfad></pfad>	Gibt an, wo das File zur Ablage der Prozess-ID des MPD- Daemons liegen soll. Beispiel: pid_file "/media/sdb1/mpd/mpd.pid"

Tabelle 49.2 Grundeinstellungen in /etc/mpd.conf

Einstellung in /etc/mpd.conf	Beschreibung
state_file <pfad></pfad>	Gibt den Speicherort des State Files an (das übergeord- nete Directory muss vom MPD-User beschreibbar sein). Das optionale State File wird vom MPD benötigt, um den Serverzustand (Play-Queue, Playback-Position usw.) persistent zwischen Restart und Reboot des Servers zu halten. Beispiel: state_file "/media/sdb1/mpd/mpd.state"
audio_output	Definiert, über welches Ausgabe-Device der Sound tat- sächlich ausgegeben werden soll. Die Ausgabe über ALSA ist voreingestellt
	Beispiel (ALSA-Ausgabe mit Software-Mixer):
	<pre>audio_output { type "alsa" name "NUC-Esszimmer" mixer_type "software" device "esszimmer" }</pre>
port <port></port>	TCP-Port, auf dem der MPD-Daemon hören soll, Default ist 6600. Beispiel: port "6601"
# bind_to_address "localhost"	Diese Zeile auskommentieren, sodass alle Rechner aus dem lokalen Netzwerk den MPD ansprechen können.
auto_update <yes></yes>	Regelt, ob die Datenbank automatisch vom Server aktualisiert werden soll. Beispiel: auto_update "yes"

Tabelle 49.2 Grundeinstellungen in /etc/mpd.conf (Forts.)

Die Installation von MPD erzeugt automatisch ein *init.d*-Skript, zu finden in */etc/init.d/ mpd*, mit dem Sie komfortabel den MPD-Service starten und stoppen können.

Nach des Einstellungen in der *mpd.conf*-Datei starten Sie den MPD-Service neu (sudo service mpd restart), um die Änderungen direkt wirksam werden zu lassen.

49.1.5 Versuchslauf: den ersten Sound mit MPC abspielen

Eine gute Möglichkeit, die ersten Schritte mit dem MPD zu gehen, ist die Ansteuerung über den *MPC*, den *Music Player Client*, den Sie in Abschnitt 49.1.3 bereits vorsorglich mitinstalliert haben. Nehmen wir an, Sie starten MPC auf demselben Rechner, auf dem auch der MPD läuft, und haben die Default-Einstellung für den MPD-Port (6600) beibehalten. Dann finden Sie mit

mpc–p6600listall

heraus, welche Musiktitel in Ihrer MPD-Datenbank bereits enthalten sind, und mit

mpc -p 6600 add "Titel"

fügen Sie (am besten per Copy-and-paste des Filenamens) einen dieser Titel in Ihre Playlist ein, bevor Sie mit

mpc -p 6600 play

genau diesen Song abspielen lassen. Ist Ihre MPD-Datenbank noch leer, können Sie sie mit mpc –p 6600 update aktualisieren lassen. Um die Ausgabelautstärke zu ändern, benutzen Sie ebenfalls ein MPC-Kommando, nämlich volume, dem Sie als Parameter die Lautstärke in Prozent geben:

mpc -p 6600 volume <Lautstärke>

Haben Sie alles richtig gemacht, hören Sie nach dem play-Kommando bereits Ihren Titel. Falls nicht, hilft Ihnen der nächste Abschnitt bei der Fehlersuche.

49.1.6 Was tun, wenn MPD Probleme macht?

Falls Sie bei dem ersten Versuchslauf keine Audioausgabe hören konnten, gehen Sie methodisch vor, um der Ursache auf den Grund zu gehen:

- Überprüfen Sie zuallererst die Benutzerrechte (da sie in der Regel für fast alle Probleme die Ursache darstellen) und überprüfen Sie hier insbesondere, ob der Read/Write-Zugriff auf die Files, die Sie in */etc/mpd.conf* definiert haben, für den MPD-User möglich ist.
- 2. Prüfen Sie mit einem Aufruf von mpd -version, ob Ihr gewünschtes Feature (z. B. Audioformat) überhaupt in Ihrem MPD-Build unterstützt wird.
- 3. Prüfen Sie das generierte Logfile. Den Pfad dazu haben Sie in */etc/mpd.conf* spezifiziert.
- 4. Prüfen Sie auf der Webseite *www.musicpd.org*, ob Sie die aktuellste Version von MPD einsetzen.
- 5. Starten Sie MPD als no-daemon, um direkt eine mögliche Fehlerausgabe zu erhalten (siehe Abbildung 49.3): mpd -v --stdout --no-daemon -verbose [Pfad zu Logfile]
- 6. Alternativ können Sie auch den Log-Level im Config-File */etc/mpd.conf* erhöhen, indem Sie die Option log_level "verbose" setzen und den MPD-Service neu starten. Danach lesen Sie bitte das Logfile aus.

- 7. Prüfen Sie, ob MPD auch für den Port konfiguriert wurde, auf den Sie mit dem Client zugreifen wollen. Per Default ist das Port 6600, Sie können ihn aber in /etc/mpd.conf umsetzen (siehe Tabelle 49.2). Stellen Sie ebenfalls sicher, dass Sie mit der korrekten IP-Adresse des MPD-Servers arbeiten und der MPD-Port von Ihrer Firewall nicht geblockt wird.
- 8. Starten Sie netstat -apn|grep mpd als Root, um herauszufinden, ob MPD überhaupt läuft, und netcat localhost 6600, ob MPD auf seinem Port (6600) mithört. Statt localhost können Sie natürlich auch die IP-Adresse des MPD-Rechners verwenden (Remote-Zugriff). Eine Antwort sollte in etwa so aussehen: OK MPD 0.18.0.
- 9. Falls Ihr Loopback-Interface nicht gestartet ist, können Sie sich nicht mit MPD verbinden. Korrigieren Sie das bitte als Root mit ifconfig lo up.

Abbildung 49.3 Start von MPD im Verbose-Modus

Arbeitet Ihr MPD-Daemon korrekt, die Audioausgabe aber nach wie vor nicht, sind weitere Untersuchungen notwendig:

- 1. Der Benutzer-Account, mit dem MPD läuft, muss die Erlaubnis haben, auf die Soundkarte zuzugreifen. Dies erreichen Sie, indem Sie dem Benutzer die zusätzliche Gruppe audio zuweisen (sudo usermod -aG audio mpd). Bestehende Mitglieder dieser Gruppe lassen sich übrigens einfach durch cat /etc/group | grep audio anzeigen.
- 2. Überprüfen Sie weiterhin, ob Ihre Soundkarte prinzipiell überhaupt arbeitet, z. B. mit dem ALSA-Tool *speaker-test*.

49.1.7 Wichtige ALSA-Kommandos

ALSA (Advanced Linux Sound Architecture) ist der grundlegende Baustein des Soundsystems unter Linux, um Soundausgaben überhaupt zu ermöglichen. Probieren Sie die in

Tabelle 49.3 aufgeführten Shell-Kommandos auf Ihrem Linux-Rechner aus. Die Informationen, die Sie erhalten, sind nicht nur nützlich, um zu sehen, welche Geräte in Ihrem System angelegt sind, sondern auch, um Fehlern besser auf die Spur zu kommen.

Kommando	Beschreibung
cat/proc/asound/cards	Ausgabe aller Soundkarten im System
<pre>cat/proc/asound/card2/stream0</pre>	Zeigt Informationen über die aktuelle Audioaus- gabe an.
cat/proc/asound/card2/pcmOp/ subO/hw_params	Zeigt die Parameter an, mit denen die Soundkarte aktuell läuft (ALSA konvertiert per Default auf 48 kHz, das ist ideal, wenn die Quelle dieselbe Samplerate besitzt).
aplay -l	Listet alle Soundkarten und digitalen Audiogeräte auf.
aplay-L	Listet Gerätenamen auf.
aplay -Desszimmer/usr/share/ sounds/alsa/Front_Center.wav	Gibt eine WAV-Datei auf dem Gerät esszimmer aus.

 Tabelle 49.3
 Wichtige Shell-Kommandos zur Audioausgabe

49.1.8 Coverabbildungen einrichten

Um für Ihren MPD-Client (nehmen wir beispielsweise den MPaD für das iPad) die beliebte Coverabbildung einzurichten, gehen Sie wie folgt vor:

- Richten Sie f
 ür den lighttpd einen Alias ein, der auf das music-Verzeichnis zeigt, z. B. /media/sdb1/music/, und nennen Sie den Alias mpd. Wie Sie den Alias einrichten, erfahren Sie in lighttpd-Abschnitt 50.11.
- 2. Erzeugen Sie, falls das nicht schon geschehen ist, für jedes Album ein eigenes Verzeichnis, in dem zusätzlich zu den Musiktiteln das File *Folder.jpg* mit dem Bild des Covers liegt.
- 3. In den MPaD-Einstellungen definieren Sie in der Sektion LOCAL COVER ART für:
 - URL: den Pfad auf Ihren Webserver, inklusive Alias, also z. B. http://192.168.178.58/mpd
 - COVER FILENAME: Folder.jpg

Von nun an erstrahlt auch der MPaD in neuem Glanz (sehen Sie Abbildung 49.4).

Abbildung 49.4 MPaD-Client mit aktivierter Coverdarstellung

49.1.9 MPD spielt Radio-Streams

Mit MPD können Sie recht einfach auch Internet-Streams (z. B. Radio) in Ihre Playlist aufnehmen. Am besten gehen Sie wie folgt vor:

- 1. Legen Sie in Ihrem *playlists*-Verzeichnis (z. B. */media/sdb1/mpd/playlists*) eine Datei mit dem Namen *Netradio.m3u* an.
- 2. Nehmen Sie sämtliche gewünschten Streams in die Datei auf, ein Beispiel zeigt Abbildung 49.5.
- 3. Rufen Sie mpc update auf.

Abbildung 49.5 Beispiel-Playlist für Radio-Streams

49.1.10 MPD im Smart Home

Ich hatte ja eingangs schon erwähnt, dass MPD ein idealer Service für die Einbindung in eine Heimautomatisierung darstellt. Der Hauptgrund dafür ist, dass er sich wunderbar fernsteuern lässt.

Das Protokoll dafür ist offengelegt und unter *www.musicpd.org/doc/protocol/index.html* dokumentiert. Sie können die Kommunikation direkt ausprobieren, indem Sie eine Telnet-Session (z. B. mit KiTTY) auf dem MPD-Rechner (Default-Port ist 6600) starten und den Daemon mit ein paar Kommandos beschäftigen. Ein paar Beispiele sind in Tabelle 49.4 aufgelistet:

MPD-Kommando	Beschreibung
currentsong	Zeigt die Songinfo des aktuell gespielten Songs an.
status	Gibt jede Menge Statusinformationen zurück, wie z. B. aktu- elle Lautstärke, Samplerate, Bitrate, abgelaufene Zeit usw.
setvol <volume></volume>	Lautstärke auf <volume> setzen (Wert in Prozent).</volume>
play[position]	Ausgabe starten (ab position in Playlist).
stop	Ausgabe stoppen.
next	Den nächsten Song in der Playlist starten.
previous	Den vorherigen Song in der Playlist starten.
<pre>shuffle[start:end]</pre>	Zufällige Ausgabe der Songs zwischen den Positionen start und end in der Playlist.
pause	Pause abwechselnd an und aus.

 Tabelle 49.4
 Beispiele f
 ür das MPD-Protokoll

Der folgende Screenshot in Abbildung 49.6 zeigt Ihnen die Ausgabe des stats-Kommandos in einer Telnet-Session:

49 Multimedia-Software: mächtig und kostenlos

Abbildung 49.6 Das stats-Kommando in einer MPD-Telnet-Session

Im Praxis-Workshop zum Thema Multiroom-Audio (siehe Kapitel 56) wird von der MPD-Fernsteuerung mittels dieses Protokolls Gebrauch gemacht. Sie lernen, wie Sie mit dem Gira HomeServer als Beispiel eine selbst gebaute Multiroom-Soundanlage ansteuern können.

49.2 Tvheadend – der Video-Streaming-Server

Tvheadend ist ein extrem ressourcenschonender TV-Server und gleichzeitig TV-Rekorder, der ideal für kleine, vernetzte Serversysteme geeignet ist. Er zaubert sowohl Live-TV als auch gespeichertes Videomaterial auf so ziemlich jedes Display durch Streaming an einen Videoclient (z. B. Kodi). Alles was Sie für die Installation und den Betrieb von Tvheadend benötigen, ist ein kleiner (und sparsamer) Linux-Rechner und einen externen oder internen DVB-Empfänger. Zum Thema TV-Karten finden Sie in Abschnitt 41.1 eine kleine Einführung. Wenn Sie mehr als nur eine TV-Karte in Ihrem Server installiert haben oder eine Karte mit mehreren Tunern, können entsprechend auch mehrere Endgeräte (Clients) unterschiedliche Programme empfangen und darstellen. Gleiches gilt für Aufnahmen. Mit nur einem installierten Tuner verteilt Tvheadend trotzdem an mehrere Clients parallel, dann aber nur ein und dasselbe Programm bzw. alle Programme, die im selben DVB-Transportstrom (genannt Bouquet, Multiplex oder einfach nur Mux) stecken.

Konfigurieren lässt sich Tvheadend über ein eingebautes Webinterface, über das Sie auch die Aufnahme Ihrer Sendungen programmieren können. Dazu stellt Tvheadend aus dem DVB-Signal selbstständig einen *EPG (Electronic Program Guide* – elektronischer Programmführer) zusammen. Außer über das Webinterface können Sie auch mit zahlreichen gut gemachten Clients (z. B. die App TvhClient für iOS und Android) auf die Tvheadend-Funktionen zugreifen. Einer davon ist der Multimedia-König Kodi, für den Sie später noch ein konkretes Umsetzungsbeispiel für Live-TV sowie Aufnahmefunktionen finden.

Auf einen Blick

TEIL I	Einführung	43
TEIL II	Grundlagen	89
TEIL III	Vorbereitung und Planung	303
TEIL IV	Hardware	491
TEIL V	Software	841
TEIL VI	Realisierungen	1071

Inhalt

Geleitwort	39
Vorwort	40

TEIL I Einführung

1	Mot	ivation »Intelligentes Wohnen«	45
1.1	Ein vir	tueller Rundgang	45
1.2	Smart	Home, Heimautomation – was ist das?	50
	1.2.1	Das Smart Home setzt auf intelligente Gebäudetechnik	50
	1.2.2	Smart-Home-Schlüsseleigenschaften	50
	1.2.3	Alternative Begriffsdefinitionen für das Smart Home	51
	1.2.4	Das Thema Heimautomation	51
1.3	Die W	ahl des Bussystems	52

2	Ents	cheidung Smart Home: ja oder ja	55
2.1	Rechn	et sich eine Businstallation für mich?	55
2.2	Das Sr	nart Home und der Energieverbrauch	56
	2.2.1 2.2.2	Wo wird am meisten Energie verbraucht? Wie hilft eine intelligente Gebäudesteuerung beim	56
		Energiesparen?	57
2.3	Wie b	ringe ich es meiner Frau bei?	59
	2.3.1	Vorbereitung für den Ernstfall	60
	2.3.2	Wo können Sie punkten und wo verlieren?	61
2.4	Das Sr	nart-Home-Gruselkabinett	62

3Die Smart-Home-Ausbaustufen653.1Die Smart-Home-Pyramide65

3.1.1 Entscheidend ist das Fundament

5

65

	3.1.2	Smart Home vorbereiten?	66
	3.1.3	Schritt für Schritt erweitern	66
	3.1.4	Smart Home nachrüsten?	67
3.2	Was kö	nnen Sie von Ihrem Smart Home erwarten?	68
	3.2.1	Die Grundfunktionen	68
	3.2.2	Automatisierung durch erweiterte Sensorik	69
	3.2.3	Bedienen, Visualisieren und Benachrichtigen	70
	3.2.4	Fernsteuern	71
	3.2.5	Szenen und Zentralfunktionen	71
	3.2.6	Vernetzung verwandelt unsmarte Geräte in smarte Geräte	73
	3.2.7	Gerüstet sein für die Zukunft	74

Abstecher in die Praxis	
-------------------------	--

4.1	Wegw	eiser	75
4.2	Ein ers	tes Praxisbeispiel: Temperatur messen mit dem Raspberry Pi	77
	4.2.1	Bauen Sie sich Ihren 1-Wire-Bus	77
	4.2.2	Geben Sie Ihrem RasPi ein Betriebssystem	78
	4.2.3	Betreiben Sie Ihren RasPi »headless«	81
	4.2.4	Installieren Sie den 1-Wire-Server OWFS	83

TEIL II Grundlagen

5	Die	Elektrik im Wohnhaus	91
5.1	Übers	tromschutzeinrichtungen und Fehlerstromschutzeinrichtungen	91
	5.1.1	Was ist Selektivität?	91
	5.1.2	Der Leitungsschutzschalter (LS-Schalter)	92
	5.1.3	Der Fehlerstromschutzschalter	93
	5.1.4	Der selektive Leitungsschutzschalter (SLS-Schalter)	95
	5.1.5	Die Kombination aus Fehlerstromschutzschalter und	
		Leitungsschutzschalter	96
5.2	Leitun	gsverlegung und Installationszonen	97
	5.2.1	Grundsätze der Leitungsverlegung	97
	5.2.2	Die Installationszonen	97
	5.2.3	Schutzbereiche für Räume mit Badewanne oder Dusche	99

5.3	Die wichtigsten Installationsleitungen	101
5.4	Die IP-Schutzarten	104

6 Grundwissen Elektronik und Digitaltechnik 107

6.1	Einfac	he Logikfunktionen	107
6.2	Flipflo	ps	108
6.3	Schlie	3er und Öffner	109
6.4	Wie fu	nktioniert ein Regelkreis?	110
	6.4.1	Der Standardregelkreis	110
	6.4.2	Temperaturregelung im KNX-Umfeld	111
	6.4.3	Regelalgorithmen verstehen	111
6.5	Hyster	ese	113
6.6	Die Eir	iheit Lux	115

7 Gebäudeautomation verstehen

117	

7.1	Das Sn	nart Home umfasst alle Gewerke	117
	7.1.1	Welche Gewerke werden automatisiert?	117
	7.1.2	Um smart zu werden, müssen die Gewerke vernetzt sein	119
7.2	Vergle	ich mit der herkömmlichen Elektroinstallation	121
	7.2.1	Jalousiensteuerung konventionell	121
	7.2.2	Jalousiensteuerung in smart	121
	7.2.3	Auch Bedienelemente können smart oder unsmart sein	122
7.3	Basiste	chnologien für die Gebäudeautomation	123
7.4	Die KN	X-Infrastruktur	124
	7.4.1	Ein KNX-Minimalaufbau	124
	7.4.2	Vorstellung der KNX-Komponenten	125
7.5	Meiste	rn Sie den Einstieg!	129
7.5	Meiste 7.5.1	rn Sie den Einstieg! Bauen Sie den ersten Prototyp	129 129
7.5	Meiste 7.5.1 7.5.2	rn Sie den Einstieg! Bauen Sie den ersten Prototyp Vom richtigen Umgang mit KNX-Leitungen	129 129 130
7.5	Meiste 7.5.1 7.5.2 7.5.3	rn Sie den Einstieg! Bauen Sie den ersten Prototyp Vom richtigen Umgang mit KNX-Leitungen Datenschienen sind nicht mehr aktuell	129 129 130 132
8	Inte	lligent vernetzen mit EIB/KNX	13
-----	-------------------------	---	------------------
8.1	KNX b	eherrscht verschiedene Übertragungsmedien	
8.2	Die To	pologie von KNX TP	
	8.2.1 8.2.2 8.2.3	Welche KNX-TP-Topologien sind möglich? Liniensegmente und Linien Es wird noch größer: mit Bereichen	13 13 14
8.3	Die ph	ysikalischen Adressen	
	8.3.1 8.3.2	Die Notation der physikalischen Adresse Spezielle physikalische Adressen für KNX-Koppler	14 14
8.4	Die Gr	uppenadressen	
	8.4.1 8.4.2	Gruppenadressen sind die virtuellen Verdrahtungen Die Notation von Gruppenadressen	14 14
8.5	Die To	pologie von KNX PL	
	8.5.1 8.5.2 8.5.3	Die Bereichskopplung bei KNX PL Zusammenschalten von KNX TP und KNX PL Wann ist KNX PL nicht möglich?	
86	Die To	nologie von KNX RE	14
0.0			± 1 /
0./	871	KNXnet/IP-Geräte	14 1 <i>1</i>
	8.7.2	Anforderungen an das IP-Netzwerk	
8.8	Wie fu	Inktioniert die Übertragung?	
	8.8.1	Übertragung über Twisted Pair: KNX TP1	
	8.8.2	Übertragung über das Stromnetz: KNX PL	
	8.8.3	Die drahtlose Alternative: KNX RF	15
8.9	Die KN	IX-Protokolle	
	8.9.1	Das KNX-TP1-Protokoll	
	8.9.2	Erweiterter Telegrammaufbau bei KNX PL	
	8.9.3	Der Telegrammaufbau bei KNX RF	
	8.9.4	Ein KNX-TP1-Telegramm im Busmonitor	

9	Atmosphärisches Licht	mit DALI
---	-----------------------	----------

9.1	Was is	t DALI?	167
9.2	Warun	n gibt es DALI?	168
	9.2.1	Der Vergleich zur 1–10-V-Technik	168

	9.2.2	Ist ein weiterer Bus sinnvoll?	169
9.3	Die DA	LI-Technik	170
9.4	Die DA	LI-Installation	171
	9.4.1	Eine separate Busleitung ist nicht erforderlich	171
	9.4.2	Das DALI-Anschlussschema	172
	9.4.3	Ansteuerung von RGB-LEDs	173
	9.4.4	Der Baustellenbetrieb	174
9.5	DALI in	n Smart Home	174

10 1-Wire: nicht nur »eine« Ader

10.1	1-Wire-	Grundlagen	178
	10.1.1	Was ist so toll an 1-Wire?	178
	10.1.2	Master und Slaves	179
	10.1.3	Der 1-Wire-Bus im Smart Home	182
10.2	Die Spa	nnungsversorgung des 1-Wire-Bus	183
	10.2.1	Wann ist ein externes Netzteil erforderlich?	183
	10.2.2	Parasitär oder nicht?	183
	10.2.3	Stromverbrauch der 1-Wire-Geräte	185
10.3	Die Arc	hitektur: Topologie von 1-Wire	186
	10.3.1	Welche 1-Wire-Topologien sind möglich?	186
	10.3.2	Wie »schwer« ist Ihr 1-Wire-Bus?	187
10.4	Die 1-W	/ire-Identifikationsnummer	189
10.5	Die ricł	ntige Verkabelung	189
10.6	Die Üb	erprüfung Ihres 1-Wire-Netzwerks	191
10.7	1-Wire:	So wird es professionell	192
10.8	Literati	ır	194

11 Energy Harvesting mit EnOcean

11.1	Der En	Dcean-Standard	196
	11.1.1	Was zeichnet EnOcean aus?	196
	11.1.2	Von der Natur gelernt: Energy Harvesting	197
	11.1.3	Das EnOcean-Protokoll	198
	11.1.4	Weitere hilfreiche Dokumentationen	200

177

11.2	EnOcea	in im Einsatz	200
	11.2.1	EnOcean für den Entwickler	200
	11.2.2	EnOcean für den Anwender	201
11.3	EnOcea	n im Smart Home	202
	11.3.1	Autonomes Funksystem	203
	11.3.2	Mischform auf Basis von herstellerspezifischen Lösungen	203
	11.3.3	Anbindung von EnOcean an KNX	204
	11.3.4	Erhöhen Sie die Reichweite mit Repeatern	205

12 Weitere Technologien und Standards

12.1	Einfach	e serielle Verbindungen mit RS-232 und RS-485	207
	12.1.1	Die serielle RS-232-Schnittstelle	208
	12.1.2	Differenzielle Übertragung mit RS-485	210
12.2	DMX –	professionelles Licht aus der Bühnentechnik	211
	12.2.1	DMX-Busaufbau	211
	12.2.2	Die DMX-Übertragung	212
	12.2.3	DMX im Smart Home	213
	12.2.4	Remote Device Management (RDM)	213
12.3	ZigBee	und Z-Wave	214
	12.3.1	ZigBee – Tanz der Honigbienen	214
	12.3.2	Z-Wave	216
	12.3.3	ZigBee, Z-Wave und Bluetooth im Vergleich	217
12.4	Ethern	et – der Standard in der vernetzten Welt	218
12.4	Ethern 12.4.1	et – der Standard in der vernetzten Welt Die Ethernet-Datenübertragung	218 219
12.4	Etherno 12.4.1 12.4.2	et – der Standard in der vernetzten Welt Die Ethernet-Datenübertragung Das Ethernet-Rahmenformat	218 219 220
12.4	Etherne 12.4.1 12.4.2 12.4.3	et – der Standard in der vernetzten Welt Die Ethernet-Datenübertragung Das Ethernet-Rahmenformat Die Ethernet-Topologie	218 219 220 223
12.4	Etherne 12.4.1 12.4.2 12.4.3 Funkne	et – der Standard in der vernetzten Welt Die Ethernet-Datenübertragung Das Ethernet-Rahmenformat Die Ethernet-Topologie etzwerke mit WLAN	218 219 220 223 224
12.4 12.5	Etherne 12.4.1 12.4.2 12.4.3 Funkne 12.5.1	et – der Standard in der vernetzten Welt Die Ethernet-Datenübertragung Das Ethernet-Rahmenformat Die Ethernet-Topologie etzwerke mit WLAN WLAN ist eine Art drahtloses Ethernet	218 219 220 223 224 224
12.4 12.5	Etherne 12.4.1 12.4.2 12.4.3 Funkne 12.5.1 12.5.2	et – der Standard in der vernetzten Welt Die Ethernet-Datenübertragung Das Ethernet-Rahmenformat Die Ethernet-Topologie etzwerke mit WLAN WLAN ist eine Art drahtloses Ethernet Die wichtigsten WLAN-Techniken	218 219 220 223 224 224 225
12.4 12.5	Etherne 12.4.1 12.4.2 12.4.3 Funkne 12.5.1 12.5.2 12.5.3	et – der Standard in der vernetzten Welt Die Ethernet-Datenübertragung Das Ethernet-Rahmenformat Die Ethernet-Topologie etzwerke mit WLAN WLAN ist eine Art drahtloses Ethernet Die wichtigsten WLAN-Techniken Das WLAN-Protokoll	218 219 220 223 224 224 225 225
12.4	Etherne 12.4.1 12.4.2 12.4.3 Funkne 12.5.1 12.5.2 12.5.3 12.5.4	et – der Standard in der vernetzten Welt Die Ethernet-Datenübertragung Das Ethernet-Rahmenformat Die Ethernet-Topologie etzwerke mit WLAN WLAN ist eine Art drahtloses Ethernet Die wichtigsten WLAN-Techniken Das WLAN-Protokoll Ein Wort zur Übertragungsgeschwindigkeit	218 219 220 223 224 224 225 225 225 226
12.4	Etherne 12.4.1 12.4.2 12.4.3 Funkne 12.5.1 12.5.2 12.5.3 12.5.4 12.5.5	et – der Standard in der vernetzten Welt Die Ethernet-Datenübertragung Das Ethernet-Rahmenformat Die Ethernet-Topologie etzwerke mit WLAN WLAN ist eine Art drahtloses Ethernet Die wichtigsten WLAN-Techniken Das WLAN-Protokoll Ein Wort zur Übertragungsgeschwindigkeit 5 GHz oder 2,4 GHz?	218 219 220 223 224 224 225 225 226 226
12.4	Etherne 12.4.1 12.4.2 12.4.3 Funkne 12.5.1 12.5.2 12.5.3 12.5.4 12.5.5 12.5.6	et – der Standard in der vernetzten Welt Die Ethernet-Datenübertragung Das Ethernet-Rahmenformat Die Ethernet-Topologie etzwerke mit WLAN WLAN ist eine Art drahtloses Ethernet Die wichtigsten WLAN-Techniken Das WLAN-Protokoll Ein Wort zur Übertragungsgeschwindigkeit 5 GHz oder 2,4 GHz? Das Thema Sicherheit im WLAN	218 219 220 223 224 224 225 225 225 226 226 226 227
12.4	Etherne 12.4.1 12.4.2 12.4.3 Funkne 12.5.1 12.5.2 12.5.3 12.5.4 12.5.5 12.5.6 12.5.7	et – der Standard in der vernetzten Welt Die Ethernet-Datenübertragung Das Ethernet-Rahmenformat Die Ethernet-Topologie etzwerke mit WLAN WLAN ist eine Art drahtloses Ethernet Die wichtigsten WLAN-Techniken Das WLAN-Protokoll Ein Wort zur Übertragungsgeschwindigkeit 5 GHz oder 2,4 GHz? Das Thema Sicherheit im WLAN WLAN-Hardware	218 219 220 223 224 224 225 225 226 226 226 227 227

Inhalt

235

12.6	Antrie	e steuern mit SMI	229
	12.6.1	Technische Daten des Standard Motor Interface	230
	12.6.2	Schematischer Anschluss von SMI-Antrieben	230
12.7	Und es	gibt noch mehr: HomeMatic, RWE SmartHome usw	231
	12.7.1	HomeMatic	231
	12.7.2	RWE SmartHome	232
	12.7.3	DECT	232

13 Ausgewählte Netzwerkprotokolle

13.1	Das OS	I-Referenzmodell	235
13.2	Netzwe	erke mit SNMP managen	237
	13.2.1	Was ist SNMP?	237
	13.2.2	Von Agenten und Männern in Schwarz	238
	13.2.3	SNMP-Operationen	240
	13.2.4	Community-Strings	241
	13.2.5	Das SNMP-Protokoll	241
	13.2.6	SNMP in der Praxis	243
13.3	Plug-ar	nd-play durch UPnP und DLNA	247
	13.3.1	Ablauf der UPnP-Prozedur	248
	13.3.2	Welche Möglichkeiten ergeben sich durch UPnP?	248
	13.3.3	Digital Living Network Alliance (DLNA)	249
	13.3.4	Empfehlenswerte UPnP/DLNA-Software	250
	13.3.5	Eine Medienlandschaft mit DLNA	251

14 Linux kennenlernen253

14.1	Sichere	Verbindungen mit SSH	253
	14.1.1	SSH in der Anwendung	253
	14.1.2	Einen SSH-Key unter Linux erzeugen	254
14.2	Das Tei	minal	255
	14.2.1	Kleine Dinge, die die Arbeit im Terminal erleichtern	255
14.3	Der Edi	tor nano	256
14.4	Linux-C	Grundlagen	257
	14.4.1	Arbeiten mit Zugriffsrechten	257
	14.4.2	Arbeiten mit Netzwerkverzeichnissen	260

	14.4.3	Einbinden von lokal angeschlossenen Datenträgern	261
	14.4.4	Automatisieren mit cron	262
14.5	Die AP	۲-Paketverwaltung	264
14.6	Der Lin	ux-Startvorgang	267
	14.6.1	Geister und Dämonen	267
	14.6.2	Die unterschiedlichen Init-Systeme	268
	14.6.3	Arbeiten mit SysV-Init	268
	14.6.4	Runlevels	270
	14.6.5	Der init-Prozess und die inittab	271
	14.6.6	Ein eigenes Init-Skript schreiben	273

15	Ihrer	n Server administrieren	275
15.1	Gewini 15.1.1 15.1.2	nen Sie Informationen aus Logdateien Wichtige Logdateien in einem Linux-System Der richtige Umgang mit Logdateien	275 275 277
15.2	Übersio	ht der wichtigsten Konfigurationsdateien	277
15.3	Verbin	dungsaufbau über Ports	279
15.4	Einfach	e Serverüberwachung per Webbrowser	281
	15.4.1	Linux Dash für kleine Systeme	281
	15.4.2	Linux Dash ist schnell installiert	281
15.5	Optimi	eren Sie Ihren Server	282
	15.5.1	Optimieren Sie die Speicheraufteilung	283
	15.5.2	Moderates Overclocking erhöht zusätzlich die Leistung	283
	15.5.3	Schreibzugriffe auf die SD-Karte reduzieren	284
	15.5.4	Dem Server eine feste IP-Adresse zuordnen	285
	15.5.5	Sparen Sie Strom mit hdparm	286
15.6	Wichtig	ge Kommandos für den Administrator	288

16	Meth	nodisch vorgehen: die UML	295
16.1	Motiva	tion: Warum modellieren, warum UML?	295
	16.1.1	Beispiel 1: Einfacher Lichtschalter	296
	16.1.2	Beispiel 2: Anwesenheitslogik	297

|--|

16.2	UML-D	iagrammtypen	298
	16.2.1	Setzen Sie Zustandsautomaten ein	298
	16.2.2	Weitere Eigenschaften von Zustandsautomaten	300
16.3	UML-To	pols	300

TEIL III Vorbereitung und Planung

17 Starten Sie die Planung

17.1	Der Ma	sterplan	305
17.2	Die wic	htigsten Stakeholder	307
	17.2.1	Beziehen Sie den Architekten von Anfang an mit ein	308
	17.2.2	Wählen Sie einen kompetenten Elektriker	309
	17.2.3	Die weiteren wichtigen Gewerke	311
17.3	Bestim	men Sie Ihre Raumausstattung	312
	17.3.1	Annahmen und generelle Informationen zur	
		Ausstattungsempfehlung	312
	17.3.2	Eine konkrete Ausstattungsempfehlung	313
	17.3.3	Rauminterne Verkabelung	319
	17.3.4	Erweiterungsmöglichkeiten	319
17.4	Wichtig	ge Hersteller	320
	17.4.1	KNX-Hersteller	320
17.5	Das KN	X-User-Forum	321

18 Fürs Grobe: Werkzeuge

18.1	Handw	erkzeug	325
	18.1.1	Abmanteln, Abisolieren, Crimpen, Auflegen	326
	18.1.2	Leitungen einziehen	329
	18.1.3	Schraubendreher	329
	18.1.4	Seitenschneider	330
	18.1.5	Ausrichten mit der Wasserwaage	331
	18.1.6	Spannung und Strom messen	331
	18.1.7	Vervollständigen Sie Ihre Werkzeugausstattung	333
18.2	Elektro	werkzeug	333

19	Fürs	Feine: Softwaretools	335
19.1	Schalt	bläne zeichnen mit sPlan	335
	19.1.1	Papier und Bleistift oder CAD-Programm?	335
	19.1.2	Wie kann Sie sPlan unterstützen?	336
	19.1.3	Alternative Schaltplansoftware	337
19.2	Ideal fi	ür Tests: VirtualBox	337
	19.2.1	Download von VirtualBox	338
	19.2.2	Das Ubuntu-Image besorgen	338
	19.2.3	Die virtuelle Maschine vorbereiten	339
	19.2.4	Der erste Start	341
	19.2.5	Die Gasterweiterungen installieren	343
	19.2.6	VirtualBox-Kommandozeilentools	345
	19.2.7	Snapshots erstellen	346
19.3	Kreativ	ves Planen mit Visio	347
	19.3.1	Importieren Sie DWG-Dateien in MS-Visio	347
	19.3.2	Nützliche Shapes für Ihre Planung	347
	19.3.3	Praktische Hilfsmittel beim Zeichnen	348
19.4	Planen	mit Excel	350
	19.4.1	Der AutoFilter	350
	19.4.2	Praktische Zählfunktionen	351
	19.4.3	Inhalte aus einer vorgefertigten Liste einfügen	351
	19.4.4	Farblich hervorheben mit bedingter Formatierung	352
19.5	Wiresh	ark – der Protokoll-Analyzer	353
	19.5.1	So installieren Sie Wireshark	353
	19.5.2	Die Wireshark-Protokolldecoder	354
	19.5.3	Capture-Modus und Filter	354
	19.5.4	»Sniffen« einer ICMP-Kommunikation	355
19.6	Kleine	Helferlein für die Netzwerkdiagnose	358
	19.6.1	Ping prüft die Erreichbarkeit	358
	19.6.2	Tcpdump schneidet mit	359
	19.6.3	Iperf und Jperf messen die Geschwindigkeit	362
	19.6.4	Nmap scannt Netzwerkports	365
	19.6.5	NetHogs ermittelt die genutzte Bandbreite	368

20 Das richtige Installationsmaterial

20.1	Leitung	jen	369
	20.1.1	Bezeichnungen von Starkstromleitungen	370
	20.1.2	Farbliche Kennzeichnung von Adern	371
	20.1.3	Bezeichnungen von Schwachstromleitungen	372
	20.1.4	Koaxialkabel	373
	20.1.5	Cat-Kabel	374
20.2	Leerroh	ıre	377
	20.2.1	Warum Leerrohre so wichtig sind	377
	20.2.2	Die Druckfestigkeitsklassen	378
	20.2.3	Leerrohr für die Betoninstallation	378
	20.2.4	Leerrohr für Hohlwände, Aufputz, Estrich	380
	20.2.5	Verbinden von Leerrohren	381
20.3	Installa	tionsdosen	382
	20.3.1	Hohlwandinstallation	383
	20.3.2	Unterputzinstallation	384
	20.3.3	Betonbauinstallation	385
20.4	Installa	tionsklemmen	386
	20.4.1	Compact-Verbindungsdosenklemmen	387
	20.4.2	Universalverbindungsklemme	388
	20.4.3	MICRO-Verbindungsdosenklemmen	388
20.5	Reihen	klemmen	389
	20.5.1	Die Reihenklemmenarten	390
	20.5.2	Produktbeispiele	390

21 Die Smart-Home-Prinzipien

21.1	Was m	acht ein Eigenheim eigentlich smart?	397
21.2	Und wa	as macht es nicht unbedingt noch smarter?	398
21.3	Golden	e und silberne Regeln	399
	21.3.1	Die goldenen Regeln	399
	21.3.2	Die silbernen Regeln	403
	21.3.3	Was gern vergessen oder falsch gemacht wird	406
21.4	Wichtig	ge Grundsätze	407
	21.4.1	Zentral oder dezentral?	407
	21.4.2	Kupfer oder Luft?	409

21.5	Denker	n Sie in Szenen	410
	21.5.1	Eine Szene als Schema dargestellt	410
	21.5.2	Mögliche Szenenteilnehmer	411
	21.5.3	Arten von KNX-Szenen	412
	21.5.4	Wo werden KNX-Szenen angelegt?	413
	21.5.5	Verknüpfen Sie eine Szene mit der ETS	413
	21.5.6	Können KNX-Szenen ausgeschaltet werden?	415
	21.5.7	Vorgehen beim Definieren von Szenen	415
	21.5.8	Szenen vs. Zentralfunktionen	416

22 Lernen Sie die Planungsschritte kennen

22.1	Wünsc	hen Sie sich etwas: mit dem Raumbuch	417
	22.1.1	Welchen Zweck hat das Raumbuch?	417
	22.1.2	Wie gehen Sie bei der Erstellung vor?	418
	22.1.3	Das Raumbuch als ständiger Begleiter	422
22.2	Der Lei	tungsplan	423
	22.2.1	Die Schritte zur Erstellung des Leitungsplans	423
	22.2.2	Geben Sie Ihren Auslässen eindeutige Bezeichnungen	424
22.3	Die Ver	teilerplanung	425
	22.3.1	Die Grobplanung nach Funktion	425
	22.3.2	Die Grobplanung nach RCD-Kreis	426
	22.3.3	Die Feinplanung	427
	22.3.4	Das schematische Verkabelungsprinzip	428
	22.3.5	Unterstützung bei der professionellen Planung	
		der Deihenklemmen	422
			432
22.4	Der Str	omlaufplan	432 433
22.4 22.5	Der Str Bedien	omlaufplan	432 433 434
22.4 22.5	Der Str Bedien 22.5.1	omlaufplan konzepte bei Schaltern Wie viele Schalter benötige ich?	432 433 434 435
22.4 22.5	Der Str Bedien 22.5.1 22.5.2	omlaufplan konzepte bei Schaltern Wie viele Schalter benötige ich? Schalter oder Taster?	 432 433 434 435 436
22.4 22.5	Der Str Bedien 22.5.1 22.5.2 22.5.3	der Reinenkiemmen omlaufplan konzepte bei Schaltern Wie viele Schalter benötige ich? Schalter oder Taster? Einzeltaster oder Wippen?	 432 433 434 435 436 436
22.4 22.5	Der Str Bedien 22.5.1 22.5.2 22.5.3 22.5.4	omlaufplan konzepte bei Schaltern Wie viele Schalter benötige ich? Schalter oder Taster? Einzeltaster oder Wippen? Kurz-Lang-Kurz oder Lang-Kurz?	432 433 434 435 436 436 437
22.4 22.5	Der Str Bedien 22.5.1 22.5.2 22.5.3 22.5.4 22.5.5	omlaufplan konzepte bei Schaltern Wie viele Schalter benötige ich? Schalter oder Taster? Einzeltaster oder Wippen? Kurz-Lang-Kurz oder Lang-Kurz? 1-Punkt- oder 2-Punkt-Bedienung	 432 433 434 435 436 436 437 438
22.4 22.5	Der Str Bedien 22.5.1 22.5.2 22.5.3 22.5.4 22.5.5 22.5.6	der Keinenkierinnen omlaufplan konzepte bei Schaltern Wie viele Schalter benötige ich? Schalter oder Taster? Einzeltaster oder Wippen? Kurz-Lang-Kurz oder Lang-Kurz? 1-Punkt- oder 2-Punkt-Bedienung Bleiben Sie einheitlich	 432 433 434 435 436 436 437 438 438
22.4 22.5	Der Str Bedien 22.5.1 22.5.2 22.5.3 22.5.4 22.5.5 22.5.6 22.5.7	der Keinenkiemmen omlaufplan konzepte bei Schaltern Wie viele Schalter benötige ich? Schalter oder Taster? Einzeltaster oder Wippen? Kurz-Lang-Kurz oder Lang-Kurz? 1-Punkt- oder 2-Punkt-Bedienung Bleiben Sie einheitlich Nützliches Feature: Tastenhilfefunktion	 432 433 434 435 436 436 436 437 438 438 439
22.4 22.5	Der Str Bedien 22.5.1 22.5.2 22.5.3 22.5.4 22.5.5 22.5.6 22.5.7 22.5.8	omlaufplan konzepte bei Schaltern Wie viele Schalter benötige ich? Schalter oder Taster? Einzeltaster oder Wippen? Kurz-Lang-Kurz oder Lang-Kurz? 1-Punkt- oder 2-Punkt-Bedienung Bleiben Sie einheitlich Nützliches Feature: Tastenhilfefunktion Die richtige Montagehöhe	 432 433 434 435 436 436 436 437 438 438 439 439
22.4 22.5 22.6	Der Str Bedien 22.5.1 22.5.2 22.5.3 22.5.4 22.5.5 22.5.6 22.5.7 22.5.8 Logika	der Keinenkierinnen omlaufplan konzepte bei Schaltern Wie viele Schalter benötige ich? Schalter oder Taster? Einzeltaster oder Wippen? Kurz-Lang-Kurz oder Lang-Kurz? 1-Punkt- oder 2-Punkt-Bedienung Bleiben Sie einheitlich Nützliches Feature: Tastenhilfefunktion Die richtige Montagehöhe	 432 433 434 435 436 436 436 437 438 439 439 439 440

22.6.2	Die Abbildung auf eine eigene Methode	442
22.6.3	Der Anforderungskatalog in der Praxis	445
22.6.4	Ein Logikkatalog in Excel	446

23 Bares Geld sparen

23.1	Welche	Arbeiten können Sie selbst durchführen?	447
23.2	Wie we	rden Leitungen eingezogen?	448
23.3	Die Kor	nponenten einkaufen	450
	23.3.1	Planen Sie Ihre Einkaufsliste	450
	23.3.2	Wo kaufen Sie ein?	451
	23.3.3	Zeit ist Geld	452
	23.3.4	Daran führt kein Weg vorbei: die ETS beschaffen	454
23.4	KNX-Ko	omponenten im Rechenbeispiel	456
23.5	Ansetze	en der Preisschraube	460

24 Planen der Infrastruktur

24.1	Vernet	zen der Subsysteme	461
	24.1.1	Das Smart-Home-Ökosystem	461
	24.1.2	Die Anbindung der Subsysteme	462
	24.1.3	Gateways lösen die Verständigungsprobleme	463
24.2	Der stru	ukturierte Ethernet-Netzwerkaufbau	464
24.3	Die Sich	nerheit von KNX	465
	24.3.1	Unterbinden Sie den physikalischen Buszugriff außerhalb	
		Ihres Gebäudes	466
	24.3.2	Unterbinden Sie den indirekten Buszugriff über ein IP-Netzwerk	468
	24.3.3	Und wenn es trotzdem passiert?	468
	24.3.4	Ausblick Sicherheit	468
24.4	Schaffe	n Sie einen sicheren Netzwerkzugang	469
	24.4.1	Machen Sie Ihren Router erreichbar	470
	24.4.2	VPN auf dem Router einrichten	471
	24.4.3	VPN auf den Clients einrichten	473
	24.4.4	Die Visualisierung von unterwegs aufrufen	473

24.5	Das Ne	tzwerk abschotten mit Firewalls	473
	24.5.1	Abgrenzung Firewall, IDS, IPS	474
	24.5.2	Wie schützt eine Firewall?	474
	24.5.3	Sicherheit für Ihr Heimnetzwerk	475
24.6	Ein Bac	kup-System einrichten	476
	24.6.1	Die richtige Backup-Strategie	476
	24.6.2	Sichern Sie SD-Karten im laufenden Betrieb	478
	24.6.3	Richten Sie einen rsync-Daemon ein	479
	24.6.4	Beispielanwendungen mit rsync	481
24.7	Versch	lüsselung der Daten	483
	24.7.1	Verschlüsselung von Festplatten, Partitionen und Dateien	483
	24.7.2	Verschlüsselung von Passwortdateien	484
24.8	Denke	n Sie an den Energieverbrauch	485
	24.8.1	Stromverbrauch von Smart-Home-Komponenten	485
	24.8.2	Strategien zur Energieeinsparung	488

TEIL IV Hardware

Scha	ltschrank – der Maschinenraum	493
Hausar	schlusskasten, Zählerschrank, Stromkreisverteiler	493
Der Str	omkreisverteiler im Detail	494
25.2.1	Felder und Teilungseinheiten	494
25.2.2	Die Innenausstattung	495
Hinwei	se zur Dimensionierung, Installation und Platzierung	497
25.3.1	Welches ist die richtige Größe für mich?	497
25.3.2	Wie erfolgt die Leitungseinführung?	497
25.3.3	Was gilt es bei Größe und Aufteilung zu beachten?	497
Ein 19-7	Zoll-Rack für Netzwerk und Multimedia	498
25.4.1	Die 19-Zoll-Rack-Formate	499
25.4.2	Die Auswahl des richtigen Racks	500
25.4.3	Sinnvolles Rack-Zubehör	500
25.4.4	Was kommt in das 19-Zoll-Rack?	502
	Scha Hausar Der Str 25.2.1 25.2.2 Hinwei 25.3.1 25.3.2 25.3.3 Ein 19-2 25.4.1 25.4.2 25.4.3 25.4.3 25.4.4	Schaltschrank – der Maschinenraum Hausanschlusskasten, Zählerschrank, Stromkreisverteiler Der Stromkreisverteiler im Detail 25.2.1 Felder und Teilungseinheiten 25.2.2 Die Innenausstattung Hinweise zur Dimensionierung, Installation und Platzierung 25.3.1 Welches ist die richtige Größe für mich? 25.3.2 Wie erfolgt die Leitungseinführung? 25.3.3 Was gilt es bei Größe und Aufteilung zu beachten? Ein 19-Zoll-Rack für Netzwerk und Multimedia 25.4.1 Die 19-Zoll-Rack-Formate 25.4.3 Sinnvolles Rack-Zubehör 25.4.4 Was kommt in das 19-Zoll-Rack?

503

26 Den Bus versorgen: Spannungsquellen

26.1	Speziell: KNX-Spannungsversorgung	503
26.2	Die Drossel	507
26.3	Universell: REG-Spannungsquellen	507

27 Mit Schnittstellen auf den KNX-Bus zugreifen 511

27.1	Einfach: serielle Schnittstelle		511
27.2	Robust	: USB-Schnittstelle	513
27.3	Komfo	rtabel: IP-Schnittstelle	514
	27.3.1	Anschluss der KNX-IP-Schnittstelle	515
	27.3.2	Konfiguration der KNX-IP-Schnittstelle	516
27.4	Flexibe	l: IP-Router	517
	27.4.1	Anschluss des IP-Routers	517
	27.4.2	Ein IP-Router-Produktbeispiel	518
27.5	Extrava	agant: Der Raspberry Pi als KNX-Schnittstelle	520

28 Geräte, Linien und Bereiche koppeln

28.1	Ein Ein:	zelgerät anbinden: Busankoppler	525
28.2	Größer	werden: Linienkoppler und Bereichskoppler	527
	28.2.1	Einsatz als Linienverstärker	528
	28.2.2	Einsatz als Linienkoppler oder Bereichskoppler	528
	28.2.3	Ein Linienkoppler-Produktbeispiel	529
	28.2.4	KNX Powerline einbinden mit Medienkopplern	531

29 Messen mit Sensoren

29.1	Tür- und Fensterkontakte		
	29.1.1	Die Anwendungsvielfalt von Fenster- und Türkontakten	533

533

29.1.2	Verschiedene Arten von Kontaktelementen	534
29.1.3	Anschlussbeispiel für Fensterkontakte	536
Beweg	ungsmelder	537
29.2.1	Bauarten von PIR-Bewegungsmeldern	538
29.2.2	Anschluss eines KNX-Bewegungsmelders	538
29.2.3	Anschluss eines konventionellen Bewegungsmelders	539
29.2.4	Beispiel für einen KNX-Bewegungsmelder im Innenbereich	540
29.2.5	Beispiel für einen KNX-Bewegungsmelder im Außenbereich	541
29.2.6	Die richtige Platzierung von PIR-Bewegungsmeldern	543
Präsen	zmelder	544
29.3.1	Funktionalitäten von Präsenzmeldern	544
29.3.2	Der Unterschied zum Bewegungsmelder	545
29.3.3	Die richtige Platzierung von Präsenzmeldern	546
29.3.4	Beispiel für einen KNX-Präsenzmelder im Innenbereich	546
29.3.5	Die häufigsten Probleme beim Einsatz von PIR-Meldern	549
Wetter	rstation	551
Wette 29.4.1	rstation Anschluss der Wetterstation	551 552
Wetter 29.4.1 29.4.2	r station Anschluss der Wetterstation Positionierung der Wetterstation	551 552 553
Wetter 29.4.1 29.4.2 29.4.3	rstation Anschluss der Wetterstation Positionierung der Wetterstation Anwendungsbeispiele für die Wetterstation	551 552 553 554
Wetter 29.4.1 29.4.2 29.4.3 Rauchy	rstation Anschluss der Wetterstation Positionierung der Wetterstation Anwendungsbeispiele für die Wetterstation warnmelder	551 552 553 554 556
Wetter 29.4.1 29.4.2 29.4.3 Rauchy 29.5.1	rstation Anschluss der Wetterstation Positionierung der Wetterstation Anwendungsbeispiele für die Wetterstation warnmelder Die Arbeitsweise von Rauchwarnmeldern	551 552 553 554 556 556
Wetter 29.4.1 29.4.2 29.4.3 Rauchv 29.5.1 29.5.2	rstation Anschluss der Wetterstation Positionierung der Wetterstation Anwendungsbeispiele für die Wetterstation warnmelder Die Arbeitsweise von Rauchwarnmeldern Rauchwarnmelder vernetzen – so klappt es!	551 552 553 554 556 556 557
Wetter 29.4.1 29.4.2 29.4.3 Rauchy 29.5.1 29.5.2 Wasser	rstation Anschluss der Wetterstation Positionierung der Wetterstation Anwendungsbeispiele für die Wetterstation warnmelder Die Arbeitsweise von Rauchwarnmeldern Rauchwarnmelder vernetzen – so klappt es!	551 552 553 554 556 556 557 561
Wetter 29.4.1 29.4.2 29.4.3 Rauchy 29.5.1 29.5.2 Wasser Alarm	rstation Anschluss der Wetterstation Positionierung der Wetterstation Anwendungsbeispiele für die Wetterstation warnmelder Die Arbeitsweise von Rauchwarnmeldern Rauchwarnmelder vernetzen – so klappt es! melder	551 552 553 554 556 556 557 561 563
Wetter 29.4.1 29.4.2 29.4.3 Rauchy 29.5.1 29.5.2 Wasser Alarmr Luftgü	rstation Anschluss der Wetterstation Positionierung der Wetterstation Anwendungsbeispiele für die Wetterstation warnmelder Die Arbeitsweise von Rauchwarnmeldern Rauchwarnmelder vernetzen – so klappt es! rmelder melder tesensoren	551 552 553 554 556 556 557 561 563 564
Wetter 29.4.1 29.4.2 29.4.3 Rauchv 29.5.1 29.5.2 Wasser Alarmr Luftgü 29.8.1	rstation	551 552 553 554 556 556 557 561 563 564 564
Wetter 29.4.1 29.4.2 29.4.3 Rauchy 29.5.1 29.5.2 Wasser Alarmr Luftgür 29.8.1 29.8.2	rstation	551 552 553 554 556 557 561 563 564 564 564
Wetter 29.4.1 29.4.2 29.4.3 Rauchy 29.5.1 29.5.2 Wasser Alarmr Luftgü 29.8.1 29.8.2 29.8.3	rstation	551 552 553 554 556 557 561 563 564 564 564 566 567
Wetter 29.4.1 29.4.2 29.4.3 Rauchv 29.5.1 29.5.2 Wasser Alarmr Luftgü 29.8.1 29.8.1 29.8.3 29.8.3	rstation	551 552 553 554 556 557 561 563 564 564 564 566 567 569
	29.1.3 Beweg 29.2.1 29.2.2 29.2.3 29.2.4 29.2.5 29.2.6 Präsen 29.3.1 29.3.2 29.3.3 29.3.4 29.3.5	29.1.3Anschlussbeispiel für FensterkontakteBewegungsmelder29.2.1Bauarten von PIR-Bewegungsmeldern29.2.2Anschluss eines KNX-Bewegungsmelders29.2.3Anschluss eines konventionellen Bewegungsmelders29.2.4Beispiel für einen KNX-Bewegungsmelder im Innenbereich29.2.5Beispiel für einen KNX-Bewegungsmelder im Außenbereich29.2.6Die richtige Platzierung von PIR-Bewegungsmeldern29.3.1Funktionalitäten von Präsenzmeldern29.3.2Der Unterschied zum Bewegungsmelder29.3.3Die richtige Platzierung von Präsenzmeldern29.3.4Beispiel für einen KNX-Präsenzmelder im Innenbereich29.3.5Die häufigsten Probleme beim Einsatz von PIR-Meldern

|--|

30.1	Schalta	ktor	575
	30.1.1	Anschluss eines KNX-Schaltaktors	576
	30.1.2	Den richtigen Schaltaktor auswählen	576

	30.1.3	Produktbeispiel für einen KNX-Schaltaktor	578
	30.1.4	Grundlegende Softwarefunktionen	579
30.2	Schalta	aktor mit Strommessung	580
	30.2.1	Produktbeispiel für einen Schaltaktor mit Wirkleistungsmessung	581
	30.2.2	Der Vorteil der Strommessung	582
30.3	Analog	aktor	583
30.4	Jalousi	eaktor	585
	30.4.1	Anschluss eines KNX-Jalousieaktors	585
	30.4.2	Produktbeispiel für einen KNX-Jalousieaktor	586
	30.4.3	Spezielle Softwarefunktionen von Jalousieaktoren	588
30.5	Rolllad	enaktor	589
30.5 30.6	Rolllad Dimma	enaktor	589 590
30.5 30.6	Rolllad Dimma 30.6.1	enaktor Iktor Überblick über verschiedene Lasttypen	589 590 591
30.5 30.6	Rolllad Dimma 30.6.1 30.6.2	enaktor Iktor Überblick über verschiedene Lasttypen Produktbeispiel für einen KNX-Dimmaktor	589 590 591 592
30.5 30.6	Rolllad Dimma 30.6.1 30.6.2 30.6.3	enaktor Iktor Überblick über verschiedene Lasttypen Produktbeispiel für einen KNX-Dimmaktor Hinweise zum Einsatz von Dimmaktoren	589 590 591 592 593
30.5 30.6	Rolllad Dimma 30.6.1 30.6.2 30.6.3 30.6.4	enaktor Iktor Überblick über verschiedene Lasttypen Produktbeispiel für einen KNX-Dimmaktor Hinweise zum Einsatz von Dimmaktoren Alternativen zum Dimmaktor	589 590 591 592 593 593
30.5 30.6 30.7	Rolllad 30.6.1 30.6.2 30.6.3 30.6.4 Heizun	enaktor iktor Überblick über verschiedene Lasttypen Produktbeispiel für einen KNX-Dimmaktor Hinweise zum Einsatz von Dimmaktoren Alternativen zum Dimmaktor gsaktor	589 590 591 592 593 593 594
30.5 30.6 30.7 30.8	Rolllad Dimma 30.6.1 30.6.2 30.6.3 30.6.4 Heizun Lüfter	enaktor	589 590 591 592 593 593 594 597
30.5 30.6 30.7 30.8 30.9	Rolllad Dimma 30.6.1 30.6.2 30.6.3 30.6.4 Heizun Lüfter (Unterp	enaktor	589 590 591 592 593 593 594 597 599

31 Zustände erfassen durch Eingänge 601

31.1	Binäreingang	601
31.2	Universal-E/A-Konzentrator	604
31.3	Unterputzbinäreingang	605
31.4	Analogeingang	607

32 Multifunktionsmodule

32.1	Raum-Master	609
32.2	Raum-Controller	610

33 Welten verbinden mit Gateways

33.1	DALI-G	ateway	613
	33.1.1	Die Teilnehmeradressierung	614
	33.1.2	Produktbeispiele: KNX-DALI-Gateways	614
	33.1.3	Ein Wort zur Übertragungsgeschwindigkeit	616
	33.1.4	Das Gira KNX DALI Gateway Plus	617
33.2	DMX-G	ateway	619
33.3	EnOcea	n-Gateway	621
33.3	EnOcea 33.3.1	n-Gateway Die KNX-Anbindung von EnOcean	621 621
33.3	EnOcea 33.3.1 33.3.2	n-Gateway Die KNX-Anbindung von EnOcean Produktbeispiel KNX-EnOcean-Gateway	621 621 623
33.3	EnOcea 33.3.1 33.3.2 33.3.3	In-Gateway Die KNX-Anbindung von EnOcean Produktbeispiel KNX-EnOcean-Gateway EnOcean-Funk-Repeater	621 621 623 626
33.3	EnOcea 33.3.1 33.3.2 33.3.3 33.3.4	In-Gateway Die KNX-Anbindung von EnOcean Produktbeispiel KNX-EnOcean-Gateway EnOcean-Funk-Repeater Von DMX nach EnOcean	621 621 623 626 626

613

627

651

34 Grenzenlose Möglichkeiten: Logik-Engines

34.1	Intellig	enz auf der Hutschiene: Logikbausteine	628
	34.1.1	Überblick: Logikmodule für die Hutschiene	628
	34.1.2	Beispiele für Logikmodule	631
34.2	Zentral	e Automatisierungsrechner	633
	34.2.1	Überblick: Das Who's who der Automatisierungsrechner	634
	34.2.2	Die Zauberkiste: Gira HomeServer	634
	34.2.3	Der Enertex EibPC macht süchtig	639
	34.2.4	Der eibPort von BAB Technology	643
	34.2.5	Das Wiregate-Multifunktionsgateway von Elaborated Networks	644
	34.2.6	Weitere Visualisierungssysteme	647
34.3	Automa	atisierungssoftware-Lösungen	647

35 Energiemanagement

35.1	Wege z	ur Stromverbrauchserfassung	652
35.2	Messer	n mit KNX-Stromzählern	655
	35.2.1	EMU-Wandlerzähler	655
	35.2.2	KNX SmartMeter	656
35.3	Infraro	tlesekopf	657

663

669

35.4	Eine un	terbrechungsfreie Stromversorgung (USV)	658
	35.4.1	Welche Geräte eignen sich für USV-Betrieb?	659
	35.4.2	Klassifizierung von USVs	660
	35.4.3	Ratgeber zur USV-Anschaffung	660
	35.4.4	USV-Monitoring	662

36 Sicherheit und Überwachung

36.1	Der Überwachungsbaustein	663
36.2	Der Störmeldebaustein	665
36.3	Der Betriebsdatenerfassungsbaustein	665
36.4	KNX-Sicherheitsbausteine	666

37 Bedienen und visualisieren

37.1	Große	Vielfalt: klassische Schalterprogramme	670
	37.1.1	Große Auswahl bei den Marktführern	671
	37.1.2	Die Kombination von Rahmen und Einsatz	671
	37.1.3	Die unterschiedlichen Bauarten der Schalterprogramme	672
37.2	Große	Flexibilität: Tastsensoren	674
	37.2.1	Die Crème de la Crème der KNX-Tastsensoren	675
	37.2.2	Der Anschluss eines KNX-Tastsensors in vier Schritten	679
	37.2.3	Wenn es auch weniger sein darf	680
	37.2.4	»Kommando: Licht umschalten« – ein Produktbeispiel	681
37.3	Konver	tionelle und programmierbare Fernbedienungen	684
	37.3.1	Konventionelle Fernbedienungen	684
	37.3.2	Programmierbare Fernbedienungen	684
	37.3.3	Die Smart-Home-Anbindung	686
37.4	Intellig	ente IR-Steuerung	688
	37.4.1	Die IRTrans-Produktpalette	688
	37.4.2	IRTrans WiFi	690
	37.4.3	IRTrans in der Heimautomatisierung	691
37.5	Die sch	nelle Anzeige über Signal-LEDs	696
	37.5.1	KNX-LED-Anzeigen als Komplettgerät	696
	37.5.2	Was sich zur Visualisierung mit LEDs eignet	698
	37.5.3	Alternative LED-Anzeige	699

	37.5.4	Vorhandene Beleuchtung »missbrauchen«	700
37.6	Umfas	send visualisieren mit Touchscreen	701
	37.6.1	Handheld-Geräte mit Wandhalterung	701
	37.6.2	Der Einbau-Touchpanel-PC	701
	37.6.3	Touchpanel-PC im Eigenbau	703
37.7	Von un	terwegs: Smartphone	706
	37.7.1	Wo liegen die Grenzen?	707

38	Vorschaltgeräte und Treiber	
----	-----------------------------	--

38.1	Elektro	nische Vorschaltgeräte einsetzen	709
	38.1.1	EVG-Produktbeispiele	710
	38.1.2	Anschluss eines EVG mit 1–10-V-Schnittstelle	710
	38.1.3	Automatisierung über Schalt-/Dimmaktor	711
38.2	Spanne	ende Möglichkeiten mit DALI-EVGs	712
38.2	Spanne 38.2.1	ende Möglichkeiten mit DALI-EVGs DALI-EVGs mit T5-Leuchtstofflampen	712 712
38.2	Spanne 38.2.1 38.2.2	ende Möglichkeiten mit DALI-EVGs DALI-EVGs mit T5-Leuchtstofflampen DALI-EVGs für Halogenlampen	712 712 714
38.2	Spanne 38.2.1 38.2.2 38.2.3	ende Möglichkeiten mit DALI-EVGs DALI-EVGs mit T5-Leuchtstofflampen DALI-EVGs für Halogenlampen DALI-EVGs für LEDs	712 712 714 714

39	Bew	egen mit Antrieben	717
39.1	Schließ	Sen nie mehr vergessen: Fensterantriebe	717
39.2	Sie we	rden es nicht mehr missen wollen: Motorschloss	718
	39.2.1	Der Unterschied: halbmotorische und vollmotorische Schlösser	719
	39.2.2	Ein Motorschloss, mit KNX angesteuert	719
39.3	Therm	oelektrische und elektromotorische Stellantriebe	720
	39.3.1	Der thermoelektrische Stellantrieb	721
	39.3.2	Der elektromotorische Stellantrieb	721
	39.3.3	Produktbeispiele für Stellantriebe	721
	39.3.4	Berechnungsbeispiel für Stellantriebe	723

72	25
7	2

40.1	Lautsp	recher: Wand, Decke, Standgerät	725
	40.1.1	Standlautsprecher	726

				÷.		
- 1	n	h	а	Ľ	t i	
	•••	•••	ч	а.	۰.	

739

	40.1.2	Deckenlautsprecher	726
	40.1.3	Wandlautsprecher	727
	40.1.4	Wichtige Hersteller von Einbaulautsprechern	728
40.2	Klassiso	ch verstärken in Stereo und Surround	728
	40.2.1	Hi-Fi-Vollverstärker	729
	40.2.2	Hutschienenverstärker	730
	40.2.3	Mini-Amps	730
40.3	Verstär	ker für Multiroom-Audio	731
40.4	Autom	atisierung eingebaut: KNX-Multiroom-Verstärker	734
40.5	Ton mit	t dem Rechner erzeugen: Soundkarten	735
40.6	Sonos u	ınd Squeezebox	737

41 Video im Smart Home

41.1	TV-Kart	en	739
41.2	Multisv	vitch	740
	41.2.1	Die SAT-Verteilung über Multiswitch	740
	41.2.2	Produktbeispiel SAT-Multiswitch	741
41.3	Das Sm	art-TV	742
	41.3.1	Wann ist ein TV smart?	742
	41.3.2	Wer bietet Smart-TVs?	743
	41.3.3	Was funktioniert heute schon und was eher nicht?	744
41.4	Set-Top	-Boxen und SAT-Receiver	744
	41.4.1	Ein offenes Betriebssystem sorgt für optimale Automatisierbarkeit	744
	41.4.2	Möglichkeiten zur Smart-Home-Integration am Beispiel	744
41.5	Videom	natrix	750
	41.5.1	Videoswitch oder Videomatrix	750
	41.5.2	Videoverteilung über IP-Netzwerk	751
41.6	Beamei	und Heimkino	751
	41.6.1	Benötigte Leitungsplanung für Ihren Beamer	752
	41.6.2	Zusatzausstattung für Ihr Heimkinoerlebnis	753
	41.6.3	Den Beamer füttern	754
	41.6.4	Die Automatisierbarkeit des Beamers	754
41.7	DVD- u	nd Blu-Ray-Player	755

41.8 Videoüberwachung		berwachung	756
	41.8.1	Kameratypen und Einbindung	756
	41.8.2	Netzwerkkameras	756

42 Netzwerkkomponenten	einsetzen
------------------------	-----------

773

795

42.1	Simpel	: Der Hub	760
42.2	Robust	: Der Unmanaged Switch	761
42.3	Flexibe	I: Der Managed Switch	763
42.4	Der Sw	itch: Entscheidungshilfe	765
42.5	Netzwo	erke koppeln: Der Router	768
42.6	Clever	verkabeln mit Power over Ethernet (PoE)	770
	42.6.1	Die Technik von PoE	770
	42.6.2	Drei Möglichkeiten zur PoE-Einspeisung	770

43	Das Arbeitstier: Server	
----	-------------------------	--

43.1	Der kla	ssische Linux-Server	773
	43.1.1	Der Intel-NUC	774
	43.1.2	Der HP-ProLiant-Microserver Gen8	776
	43.1.3	Einsatzszenarien für Intel NUC und HP ProLiant	778
	43.1.4	Geben Sie Ihrem Server ein Betriebssystem	779
43.2	Klein u	nd modern: Raspberry Pi, BeagleBone Black & Co	782
	43.2.1	Raspberry Pi	782
	43.2.2	BeagleBone Black	786
	43.2.3	Cubietruck (auch bekannt als Cubieboard 3)	788
	43.2.4	Odroid U3	791
	43.2.5	Und welcher Winzling passt jetzt zu mir?	792

44	Speicher: Wohin mit den Daten?	
----	--------------------------------	--

44.1	Die Auswahl der richtigen Festplatten		796
	44.1.1	Unterschiede in der Bauform	796

				1.4	
- 1	n	h	а	It.	
			ч		

	44.1.2	Vergleich der Speichertechniken	796
	44.1.3	Auswahl des Interface-Typs	798
44.2	Direct /	Attached Storage (DAS)	799
	44.2.1	Aufgeräumt: interne Festplatten	799
	44.2.2	Flexibel: externe Festplatten	800
44.3	Netwo	rk Attached Storage (NAS)	801
44.4	Der kle	ine RAID-Ratgeber	805
44.5	Speiche	ern im Netzwerk: Ein Praxisbeispiel	808

45 Telefon, Türkommunikation und Zutrittskontrolle 811

45.1 SIP-Türsprechsysteme 811 45.1.1 Aufbau eines SIP-Türsprechsystems 812 45.2.1 Modularer Aufbau des Türkommunikationssystems 813 45.2.2 Beispielaufbau eines TKS 814 45.2.3 Beispielaufbau mit indirekter Ansteuerung des Türöffners 815 45.3 Zutrittskontrolle: Alternativen zum Schlüssel 816 45.3.1 Zugang per Zahlencode: Codetastatur 817 45.3.3 Berührungsloser Zutritt mit Kartenleser und Transponder 819 45.3.4 Kombinieren Sie die unterschiedlichen Medien 822 45.4 Telefonie 822 45.4.1 VoIP- und DECT-Telefonie 822 45.4.2 Das Telefon als Smart-Home-Komponente 823

46 Wasser, Lüftung, Heizung, Haushaltsgeräte 825

6.1	Wasser	enthärter	825
6.2	Lüfter		827
6.3	Kontro	llierte Wohnraumlüftung (KWL)	828
6.4	Heizun	gssystem	829
	46.4.1	Wärmerzeuger	830
	46.4.2	Fußbodenheizung, Radiatoren und Konvektoren	832

	46.4.3	Elektroheizung	836
46.5	Schwin	nmbad	836
46.6	Intellig	ente Haushaltsgeräte	837
	46.6.1	Noch fehlt es leider an Standards	837
	46.6.2	Konkurrierende Systeme	838
	46.6.3	Anschlussschema für Miele@home	839

TEIL V Software

47 KNX parametrieren mit der ETS-Software

843

47.1	Die ETS	installieren	844
	47.1.1	Das Setup-File herunterladen	844
	47.1.2	Die ETS-Installation durchführen	844
47.2	Richter	1 Sie Ihr eigenes KNX-Projekt ein	846
	47.2.1	Die erste Orientierung	846
	47.2.2	Legen Sie Ihre Datenbank an	846
	47.2.3	Erzeugen Sie ein Projekt in der Datenbank	848
	47.2.4	Die ETS-Projektierungsansicht	849
	47.2.5	Legen Sie die Gebäudestruktur fest	851
47.3	Geräte	und Produktdatenbanken	852
	47.3.1	Was sind Produktdatenbanken?	852
	47.3.2	Importieren Sie die benötigten Produktdatenbanken	853
	47.3.3	Platzieren Sie Geräte in die Gebäudestruktur	857
	47.3.4	Fügen Sie ein weiteres KNX-Gerät hinzu	858
47.4	Die Par	ametrierung von KNX-Geräten	859
	47.4.1	Das Ausgangsszenario	859
	47.4.2	Beschaffen der Gerätedokumentation	860
	47.4.3	Den Schaltaktor parametrieren	861
	47.4.4	Die Doppelwippe parametrieren	865
47.5	Gruppe	nadressen und Verknüpfungen anlegen	866
	47.5.1	Anlegen einer Gruppenadressenstruktur	867
	47.5.2	Verknüpfen der Gruppenadressen	872
47.6	Die Pro	grammierung durchführen	876
	47.6.1	Vervollständigen des Beispielaufbaus	876
	47.6.2	Richten Sie ein KNX-Businterface ein	879
	47.6.3	Programmieren Sie die physikalische Adresse	882

In	hal	÷
	IIai	L

	47.6.4	Programmieren von Applikation, Gruppenadressen	
		und Parametern	885
47.7	Unverzi	chtbar: Der Gruppenmonitor und der Busmonitor	886
	47.7.1	Der Gruppenmonitor	886
	47.7.2	Der Busmonitor	892
47.8	Gruppe	nadressen und Kommunikationsobjekte vertieft	892
	47.8.1	Arbeiten mit Gruppenadressen und Kommunikationsobjekten	893
	47.8.2	Attribute der Kommunikationsobjekte	894
	47.8.3	Die Flags K, L, S, Ü, A, I	895
	47.8.4	Attribute der Gruppenadressen	896
47.9	Einricht	en einer ETS-Lizenz	897
	47.9.1	Besonderheiten beim ETS-Betrieb in einer virtuellen Maschine	897
	47.9.2	Einfügen der Lizenzdatei in die ETS	898
47.10	Fehlers	uche mit der ETS	900
	47.10.1	Wie gehen Sie bei der Diagnose und der Fehlersuche vor?	900
	47.10.2	Die Geräteinfo	901
	47.10.3	Die Auswertung von physikalischen Adressen	902
	47.10.4	Die Projektprüfung	903
	47.10.5	Der Online-Fehlerdiagnose-Assistent	903
	47.10.6	Der Online-Installationsdiagnose-Assistent	903
47.11	Ein Reg	elwerk zur KNX-Parametrierung	904

48 HomeServer Experte und Client kennenlernen 909

48.1	Installa	tion und Grundeinstellungen	910
	48.1.1	Einbindung des HomeServers in die Infrastruktur	910
	48.1.2	Die Installation der Gira HomeServer-Software	911
	48.1.3	Die Grundeinstellungen für ein erstes Projekt	912
	48.1.4	Anlegen des Administrator-Accounts	914
48.2	Arbeite	n mit Kommunikationsobjekten	915
	48.2.1	Externe und interne Kommunikationsobjekte	916
	48.2.2	Der Editor für Kommunikationsobjekte	916
	48.2.3	Die Sache mit den Zentraladressen	920
	48.2.4	Remanente Kommunikationsobjekte	920
48.3	Logiker	n erschaffen	921
	48.3.1	Erste Schritte im Logikeditor	921
	48.3.2	Vorbereitungen zur ersten Logikfunktion	923

	48.3.3	Verbinden der Logikbausteine	926
	48.3.4	Der Test der Logikfunktion	928
	48.3.5	Wichtige Logikbausteine	928
	48.3.6	Befehle für die Ausgangsbox	929
	48.3.7	Grundsätzliches zu HS-Logikfunktionen	933
	48.3.8	Noch mehr Möglichkeiten: Externe Logikbausteine und	
		Funktionsvorlagen	933
48.4	Webse	iten abfragen und auswerten	934
	48.4.1	Finden und analysieren Sie die Webseite	93
	48.4.2	Erstellen Sie die Abfrage	93
	48.4.3	Das Auslösen der Webabfrage	936
48.5	Der Pro	pgrammiervorgang	93
	48.5.1	Auswahl des Programmiermediums	938
	48.5.2	Durchführen der Übertragung	939
	48.5.3	Sehen Sie dem Startvorgang zu	94(
			04-
48.6	Das Qu	adconfig-Programm	94.
48.6 48.7	Das Qu Die Plu	adConfig-Programm g-ins der Quad-Visu	94. 94:
48.6 48.7	Das Qu Die Plu 48.7.1	g-ins der Quad-Visu	94. 94: 94:
48.6 48.7	Das Qu Die Plu 48.7.1 48.7.2	g-ins der Quad-Visu Welche Plug-ins werden unterstützt? Binden Sie weitere Webseiten mit dem Browser-Plug-in ein	94. 94: 94: 94: 94:
48.6 48.7	Das Qu Die Plu 48.7.1 48.7.2 48.7.3	g-ins der Quad-Visu Welche Plug-ins werden unterstützt? Binden Sie weitere Webseiten mit dem Browser-Plug-in ein Messwerte darstellen mit dem Diagramm-Plug-in	94. 94: 94: 94: 94: 94:
48.6 48.7	Das Qu Die Plu 48.7.1 48.7.2 48.7.3 48.7.4	g-ins der Quad-Visu Welche Plug-ins werden unterstützt? Binden Sie weitere Webseiten mit dem Browser-Plug-in ein Messwerte darstellen mit dem Diagramm-Plug-in Anwendungsbeispiel Energie-Graph und Energie-Ampel	94: 94: 94: 94: 94: 94: 94:
48.6 48.7	Das Qu Die Plu 48.7.1 48.7.2 48.7.3 48.7.4 48.7.5	g-ins der Quad-Visu Welche Plug-ins werden unterstützt? Binden Sie weitere Webseiten mit dem Browser-Plug-in ein Messwerte darstellen mit dem Diagramm-Plug-in Anwendungsbeispiel Energie-Graph und Energie-Ampel Protokollieren Sie mit dem Meldungsarchiv	94. 94: 94 94 94 94 94 95:
48.6 48.7 48.8	Das Qu Die Plu 48.7.1 48.7.2 48.7.3 48.7.3 48.7.4 48.7.5 Der Qu	g-ins der Quad-Visu Welche Plug-ins werden unterstützt? Binden Sie weitere Webseiten mit dem Browser-Plug-in ein Messwerte darstellen mit dem Diagramm-Plug-in Anwendungsbeispiel Energie-Graph und Energie-Ampel Protokollieren Sie mit dem Meldungsarchiv adClient	94. 94 94 94 94 94 94 95
48.6 48.7 48.8	Das Qu Die Plu 48.7.1 48.7.2 48.7.3 48.7.4 48.7.5 Der Qu 48.8.1	g-ins der Quad-Visu	94. 94: 94: 94: 94: 94: 95: 95: 95:
48.6 48.7 48.8	Das Qu Die Plu 48.7.1 48.7.2 48.7.3 48.7.3 48.7.4 48.7.5 Der Qu 48.8.1 48.8.2	adconfig-Programm g-ins der Quad-Visu Welche Plug-ins werden unterstützt? Binden Sie weitere Webseiten mit dem Browser-Plug-in ein Messwerte darstellen mit dem Diagramm-Plug-in Anwendungsbeispiel Energie-Graph und Energie-Ampel Protokollieren Sie mit dem Meldungsarchiv adClient Richten Sie den QuadClient ein Der Aufruf des QuadClients	94. 94? 94? 94? 94? 95? 95? 95?
48.6 48.7 48.8 48.9	Das Qu Die Plu 48.7.1 48.7.2 48.7.3 48.7.4 48.7.5 Der Qu 48.8.1 48.8.2 Schaue	g-ins der Quad-Visu Welche Plug-ins werden unterstützt? Binden Sie weitere Webseiten mit dem Browser-Plug-in ein Messwerte darstellen mit dem Diagramm-Plug-in Anwendungsbeispiel Energie-Graph und Energie-Ampel Protokollieren Sie mit dem Meldungsarchiv adClient Richten Sie den QuadClient ein Der Aufruf des QuadClients en Sie dem HomeServer auf die Finger	94. 94? 94? 94? 94? 95? 95? 95? 95?
48.6 48.7 48.8 48.9	Das Qu Die Plu 48.7.1 48.7.2 48.7.3 48.7.3 48.7.4 48.7.5 Der Qu 48.8.1 48.8.2 Schaue 48.9.1	g-ins der Quad-Visu Welche Plug-ins werden unterstützt? Binden Sie weitere Webseiten mit dem Browser-Plug-in ein Messwerte darstellen mit dem Diagramm-Plug-in Anwendungsbeispiel Energie-Graph und Energie-Ampel Protokollieren Sie mit dem Meldungsarchiv adClient Richten Sie den QuadClient ein Der Aufruf des QuadClients en Sie dem HomeServer auf die Finger Die Debug-Seiten	94. 94? 94? 94? 94? 95? 95? 95? 95? 95?
48.6 48.7 48.8 48.9	Das Qu Die Plu 48.7.1 48.7.2 48.7.3 48.7.3 48.7.4 48.7.5 Der Qu 48.8.1 48.8.2 Schaue 48.9.1 48.9.2	adconfig-Programm g-ins der Quad-Visu Welche Plug-ins werden unterstützt? Binden Sie weitere Webseiten mit dem Browser-Plug-in ein Messwerte darstellen mit dem Diagramm-Plug-in Anwendungsbeispiel Energie-Graph und Energie-Ampel Protokollieren Sie mit dem Meldungsarchiv adClient Richten Sie den QuadClient ein Der Aufruf des QuadClients m Sie dem HomeServer auf die Finger Die Debug-Seiten Interne Kommunikationsobjekte beobachten mit qHSMon	94: 94: 94: 94: 94: 94: 95: 95: 95: 95: 95: 95: 95: 95: 95:
48.6 48.7 48.8 48.9	Das Qu Die Plu 48.7.1 48.7.2 48.7.3 48.7.3 48.7.4 48.7.5 Der Qu 48.8.1 48.8.2 Schaue 48.9.1 48.9.2 48.9.3	adconfig-Programm g-ins der Quad-Visu Welche Plug-ins werden unterstützt? Binden Sie weitere Webseiten mit dem Browser-Plug-in ein Messwerte darstellen mit dem Diagramm-Plug-in Anwendungsbeispiel Energie-Graph und Energie-Ampel Protokollieren Sie mit dem Meldungsarchiv adClient Richten Sie den QuadClient ein Der Aufruf des QuadClients en Sie dem HomeServer auf die Finger Die Debug-Seiten Interne Kommunikationsobjekte beobachten mit qHSMon Statusausgaben im QuadClient	94: 94: 94: 94: 94: 94: 95: 95: 95: 95: 95: 95: 95: 95: 95: 95

49 Multimedia-Software: mächtig und kostenlos 967

MPD –	der Music Player Daemon	967
49.1.1	Aufgaben des MPD-Servers	968
49.1.2	MPD-Clients	969
49.1.3	Die Installation von MPD und MPC	971
49.1.4	Den Service konfigurieren	971
49.1.5	Versuchslauf: den ersten Sound mit MPC abspielen	972
	MPD – 49.1.1 49.1.2 49.1.3 49.1.4 49.1.5	MPD – der Music Player Daemon49.1.1Aufgaben des MPD-Servers49.1.2MPD-Clients49.1.3Die Installation von MPD und MPC49.1.4Den Service konfigurieren49.1.5Versuchslauf: den ersten Sound mit MPC abspielen

	49.1.6	Was tun, wenn MPD Probleme macht?	973
	49.1.7	Wichtige ALSA-Kommandos	974
	49.1.8	Coverabbildungen einrichten	975
	49.1.9	MPD spielt Radio-Streams	976
	49.1.10	MPD im Smart Home	977
49.2	Tvhead	end – der Video-Streaming-Server	978
	49.2.1	Aufsetzen von Tvheadend	979
	49.2.2	Einrichten über das Tvheadend-Webfrontend	979
	49.2.3	Aufräumen	980
49.3	Kodi, eł	nemals XBMC – ein luxuriöses Multimedia-Frontend	981
	49.3.1	Was leistet Kodi?	982
	49.3.2	Kodi kommt in vielen Verpackungsformen	983
	49.3.3	Die Installation von OpenELEC auf dem Raspberry Pi	984
	49.3.4	Die ersten Konfigurationsschritte	984
	49.3.5	Einstellen der Grundoptionen	985
	49.3.6	OpenELEC-Optimierungsmaßnahmen	985
	49.3.7	Kodi fernsteuern	989

50 Erstaunliche Möglichkeiten mit Open-Source-Automation

50.1	libSML	– Zählerstände lesen	993
	50.1.1	Die libSML kompilieren	993
	50.1.2	Ein erster Testlauf	994
50.2	eibd – d	ler EIB-Daemon	996
	50.2.1	Die Installation von eibd	997
	50.2.2	Mit eibd auf den KNX zugreifen	999
	50.2.3	Mit eibd automatisieren	1000
	50.2.4	Weitere eibd-Kommandos	1000
50.3	Linknx	– Mehrwert für eibd	1001
	50.3.1	Die Einrichtung von Linknx auf dem RasPi	1002
	50.3.2	Arbeiten im Konfigurationsfile	1003
	50.3.3	Starten von Linknx	1004
	50.3.4	Erste Schritte über eine Telnet-Verbindung	1004
	50.3.5	Holen Sie sich einen Gehilfen an Bord	1005
	50.3.6	Und wie geht es weiter?	1006
50.4	OWFS -	- ein Filesystem für 1-Wire	1006
	50.4.1	Die Installation von OWFS	1007

	50.4.2	Die OWFS-Dienste	1007
	50.4.3	OWFS-Praxisbeispiele	1008
50.5	FHEM -	- die freundliche Hausautomation	1011
	50.5.1	FHEM ist weltoffen	1011
	50.5.2	So installieren Sie FHEM	1013
	50.5.3	Erste Schritte mit FHEM	1014
	50.5.4	Und was kann FHEM?	1017
50.6	openH/	AB – eine Metaplattform	1018
	50.6.1	Die openHAB-Bindings	1019
	50.6.2	Die openHAB-Items	1019
	50.6.3	Die Rule-Engine	1020
	50.6.4	openHAB installieren	1020
	50.6.5	Die openHAB-Visualisierung	1022
	50.6.6	Items verändern mit dem openHAB Designer	1024
50.7	SmartH	lome.py – ein modulares Framework	1025
	50.7.1	Die SmartHome.py-Plug-ins	1026
	50.7.2	SmartHome.py installieren	1026
	50.7.3	Eine erste SmartHome.py-Konfiguration	1028
	50.7.4	Der Start von SmartHome.py	1030
50.8	smartV	ISU – geniale kostenlose Visualisierung	1031
	50.8.1	Die smartVISU-Oberfläche	1032
	50.8.2	Die Installation von smartVISU	1033
	50.8.3	Erstellen einer Mini-Visualisierung	1035
50.9	knockd	– ein Port-Knocking-Server	1037
	50.9.1	Den knockd-Service installieren	1037
	50.9.2	Ihre Rechner mit knockd herunterfahren	1038
50.10	RRDtoo	ol – Datenbank nach Round-Robin-Prinzip	1041
	50.10.1	Round-Robin-Datenbank und Round-Robin-Archive	1041
	50.10.2	RRDtool im Smart Home	1041
	50.10.3	Data Source Types	1042
	50.10.4	Die Installation von RRDtool	1042
	50.10.5	Die ersten Schritte mit RRDtool	1042
	50.10.6	Nützliches rund um RRDtool	1047
50.11	L lighttpo	d – schlanker Webserver für Embedded Systeme	1047
	50.11.1	Installieren von lighttpd unter Ubuntu	1048
	50.11.2	Eine Webseite anlegen	1048
	50.11.3	Den Webserver starten und stoppen	1050
	50.11.4	PHP-Support für lighttpd einrichten	1050
	50.11.5	Einen Alias einrichten	1051

Inhalt

50.12 Freetz – alternative Firmware für die FRITZ!Box	1051
50.12.1 Die alternative Firmware bauen	1052
50.12.2 Jetzt wird es ernst: der Flash-Vorgang	1055
50.13 Cacti – ein Monitoring-Paket	1055
50.13.1 Was leistet Cacti?	1056
50.13.2 Die Installation von Cacti	1057
50.13.3 Cacti im Schnelldurchlauf	1058
50.13.4 Cacti im Smart Home	1059
50.14 v-control – perfekte Heizungsansteuerung	1060
50.15 Kurzvergleich: Wie weltoffen sind die Open-Source-	
Automatisierungen?	1061

51 Weitere kommerzielle und nicht kommerzielle Software

51.1	IP-Syme	con – einsteigerfreundliche Automatisierung	1065
	51.1.1	Technologieübergreifender Ansatz	1065
	51.1.2	Die Verwaltungskonsole	1066
	51.1.3	PHP als Skriptsprache	1066
	51.1.4	Systemvoraussetzung und Lizenzierung	1067
	51.1.5	IPSView Designer und Client	1068

51.2	Professionelle Beleuchtungsplanung mit DIALux	1068
51.3	Das i-bus Tool – Inbetriebnahmehilfe für ABB-Komponenten	1069

TEIL VI Realisierungen

52	Licht steuern	1073
----	---------------	------

52.1	Einfach	e Lichtsteuerung	1073
	52.1.1	Aufbau und Konzept	1074
	52.1.2	Parametrieren Sie den Binäreingang	1075
	52.1.3	Parametrieren Sie den Schaltaktor	1076
	52.1.4	Zusätzlich schalten über eine Visualisierung	1077
	52.1.5	Was hat es mit den Statusobjekten auf sich?	1078

52.2	Dimmb	ares Licht	1079
	52.2.1	Aufbau der Dimmeransteuerung	1080
	52.2.2	Mit dem Tastsensor dimmen	1080
	52.2.3	Parametrierung des Dimmaktors	1081
	52.2.4	Die dimmbare Beleuchtung in der Visualisierung	1084
52.3	Präsen	zgesteuerte Beleuchtung	1085
	52.3.1	Aufbau der Präsenzsteuerung	1086
	52.3.2	Parametrierung des Präsenzmelders	1087
52.4	Farben	froh mit DALI	1091
	52.4.1	Aufbau der DALI-Ansteuerung	1091
	52.4.2	Parametrierung des DALI-Gateways	1093
	52.4.3	RGB-Steuerung mit dem HomeServer Experten	1095

53	Steck	dosen schalten	1097
53.1	Schalte	n mit einfachen Aktoren	1097
53.2	Mehr N	Nöglichkeiten durch Stromerkennung	1098
	53.2.1	Aufbau der Überwachung mit Schaltaktor	1099
	53.2.2	Parametrieren Sie den Strommessaktor	1099
	F 2 2 2	Deplicieren Cie die Ausfallüberungsbungslagik	1101

53.2.3	Realisieren Sie die Austalluberwachungslogik	1101
53.2.4	Visualisieren Sie den Alarm	1102

54	Jalousien steuern	1103
----	-------------------	------

54.1	Behang	und Lamellen steuern	1103
	54.1.1	Aufbau der Jalousiesteuerung	1104
	54.1.2	Parametrierung des Tastsensors	1105
	54.1.3	Parametrierung des Jalousieaktors	1107
	54.1.4	Jalousiebedienung über die Visualisierung	1110
54.2	Einen lı	nnenrollladen bewegen	1111
	54.2.1	Änderungen gegenüber der Jalousiesteuerung	1111
	54.2.2	Eine Sperrfunktion hinzufügen	1112
54.3	Autom	atiksteuerung mit Wetterzentrale	1113
	54.3.1	Aufbau der Automatiksteuerung für Jalousien	1114
	54.3.2	Die Wetterstation vorbereiten	1115
	54.3.3	Den Windalarm parametrieren	1116

54.3.4	Windalarm in Visualisierung anzeigen	1117
54.3.5	Automatischer Blickschutz bei Dämmerung	1118

55 Heizung und Raumtemperatur regeln 1123

55.1 Den Wärmeerzeuger steuern 1123

55.2	Wohlfü	hlraumtemperatur mit Einzelraumregelung	1125
	55.2.1	Was benötigen Sie für eine Einzelraumtemperaturregelung?	1126
	55.2.2	Der schematische Aufbau	1126
	55.2.3	Das Bedienkonzept	1127
	55.2.4	Legen Sie die benötigten Gruppenadressen an	1128
	55.2.5	Parametrieren Sie den Heizungsaktor	1129
	55.2.6	Parametrieren Sie den RTR	1132
	55.2.7	Bereiten Sie die Kommunikationsobjekte auf	1134
	55.2.8	Legen Sie die Funktion im Experten an	1136
	55.2.9	Ein kurzer Funktionstest	1137
55.3	Erweite	rungen und Alternativen	1138
	55.3.1	Alternative Lösungen	1138
	55.3.2	Mögliche Erweiterungen	1139

56 Vernetztes Hören mit Multiroom Audio 1141

56.1	Was be	nötigen Sie für Ihr eigenes Multiroom-System?	1142
56.2	Das Ko	nzept	1143
56.3	Aufbau	der Multiroom-Hardware	1144
	56.3.1	Die Multiroom-Stromversorgung	1145
	56.3.2	Serverhardware und Audioverstärker	1145
	56.3.3	Anschluss der Lautsprecher	1146
56.4	Die Sof	tware für Server und Client	1147
	56.4.1	Statten Sie den Multiroom-Server aus	1147
	56.4.1 56.4.2	Statten Sie den Multiroom-Server aus Richten Sie sich die Clients ein	1147 1151
56.5	56.4.1 56.4.2 Die Ans	Statten Sie den Multiroom-Server aus Richten Sie sich die Clients ein teuerung	1147 1151 1152
56.5	56.4.1 56.4.2 Die Ans 56.5.1	Statten Sie den Multiroom-Server aus Richten Sie sich die Clients ein teuerung Ein- und Ausschalten der Soundausgabe	1147 1151 1152 1152

57	So si	eht man Fernsehen heute	1157
57.1	Zentra	le Medienbibliothek	1158
	57.1.1	Zentrale Kodi-Datenbank mit MySQL	1158
	57.1.2	Tunen, Taggen, Scrapen	1161
57.2	Fernbe	dienung: CEC oder IR-Empfänger	1163
57.3	Luxuri	ös fernsehen mit Videoclients	1164
	57.3.1	Kodi als Streaming-Client einsetzen	1164
	57.3.2	Aktivieren Sie Live-TV	1165
	57.3.3	Konfigurieren Sie das PVR-Add-on	1165
	57.3.4	Genießen Sie Ihr neues Fernsehgefühl	1167
57.4	Videos	erver und Streaming einsetzen	1168
57.5	Mobil	fernsehen	1169
57.6	Integra	ition ins Smart Home	1170
	57.6.1	Kommunikation mit der MySQL-Datenbank	1170
	57.6.2	Ferngesteuertes An- und Ausschalten	1171
	57.6.3	Beliebige Meldungen einblenden	1171
	57.6.4	Lassen Sie Ihren Fernseher Telefonanrufe anzeigen	1171

58	Mac	nen Sie Ihr Heim sicher	1173
58.1	Realisi	eren Sie eine kleine Alarmanlage	1173
	58.1.1	Vorüberlegungen	1173
	58.1.2	Komplette Gebäudeüberwachung im Logikbaustein	1174
58.2	Rauchv	varnmelder installieren und abfragen	1176
	58.2.1	Aufbau und Konzept	1177
	58.2.2	Parametrieren Sie den Binäreingang	1178
	58.2.3	Reagieren Sie auf den Alarm	1180
58.3	Möglic	hkeiten zur Alarmierung	1180
58.4	Schnel	er Überblick mit Zustandsanzeigen	1182
	58.4.1	Die Beispielbelegung der 12-fach-LED-Anzeige	1183
	58.4.2	Eine Frage der Priorität	1184
	58.4.3	Der schematische Aufbau der LED-Visualisierung	118
	58.4.4	Die benötigten Gruppenadressen	118
	58.4.5	Parametrierung der LED-Anzeige	118

58.5 Einsatz von Außenkameras 1189 58.5.1 Die Gira-TKS-Farbkamera 1190 58.5.2 Beispielanwendungen 1190 58.6 Anwendungsszenario Zutrittskontrolle 1191 58.6.1 Vorarbeiten 1192 58.6.2 Umsetzen der Zutrittskontrolle 1193

59 Aufbau eines professionellen 1-Wire-Systems

59.1	Der Hardwareaufbau	1195
59.2	Einsatz des Wiregates	1197

60 Überblick: Programmierung für den Automatisierer

60.1	Überblick über die wichtigsten Sprachen		1201
------	---	--	------

60.2	Einrich	ten einer Cross-Entwicklungsumgebung	1204
	60.2.1	Linux Toolchain für Linux Mint	1204
	60.2.2	Eclipse installieren und einrichten	1207
	60.2.3	Automatischer Transfer auf den RasPi	1210
	60.2.4	Remote Debugging integrieren	1211
	60.2.5	GitHub-Integration	1213

61 Die Möglichkeiten von Smart Metering

61.1	Wichtig	e Logfiles und Config-Dateien	1216
61.2	Anschlu	uss der Sensorik an den Messclient	1217
61.3	Konfigu	rieren Sie den Smart-Metering-Server	1218
	61.3.1	Richten Sie InfluxDB auf dem Cubietruck ein	1218
	61.3.2	Grafana auf dem Cubietruck einrichten	1223
	61.3.3	Den Webserver lighttpd installieren	1225
	61.3.4	Ein erster Test auf der Grafana-Weboberfläche	1226
	61.3.5	Die collectd-Server-Installation	1227
	61.3.6	Den InfluxDB-Collectd-Proxy installieren	1232

61.4	Konfigu	ırieren Sie den Messclient	1235
	61.4.1	Die collectd-Client-Installation	1235
	61.4.2	Zusätzliche Programmpakete für die Messwerterfassung	
61.5	Die Erst	ellung eines collectd-Exec-Skripts	1237
	61.5.1	Legen Sie einen Benutzer an	1237
	61.5.2	Entwerfen Sie das Exec-Skript	1237
	61.5.3	Führen Sie einen Testlauf durch	1240
	61.5.4	Einbinden im Exec-Plug-in	1240
61.6	Alles zu	sammen	1241

62 Unkonventionelle Projekte – oder warum brauche ich einen Bewegungsmelder unter dem Bett? 1243

62.1	Der Bev	vegungsmelder unter dem Bett	1243
62.2	Aktienkursabhängige Beleuchtungssteuerung		1244
	62.2.1	Legen Sie die Webabfrage an	1245
	62.2.2	DAX grün, LED grün	1246

63 Wenn es mal nicht so will: Troubleshooting 1249

63.1	Genere	lle Erste-Hilfe-Tipps	1249
	63.1.1	Netzwerkschwierigkeiten	1249
	63.1.2	Die häufigsten Probleme im Zusammenhang mit	
		Linux-Systemen	1250
	63.1.3	Die häufigsten Probleme im Zusammenhang mit	
		dem HomeServer Experten	1251
63.2	Versteh	en, wo es klemmt – mit strace	1251
	63.2.1	Ein Einstiegsbeispiel mit strace	1252
	63.2.2	Wichtige strace-Optionen	1253
63.3	Reparie	ren Sie den GRUB-Bootloader	1254

Index 12	255
----------	-----

Index

0–10-V-Technik 593 1–10-V-Schnittstelle 710 1-10-V-Standard 168 19-Zoll-Rack 498 1-Wire 74 auflegen 394 Außenbereich 466 Bus 75 Busmaster 77, 178, 1195, 1197 Fehlersuche 191 Filesystem 86, 1006 Gateway 645 Grundlagen 177 *iButton* 1196 Leitungstyp 189 $OWFS \rightarrow OWFS$ Praxisbeispiel 77 Shop 452 Systembeispiel 1195 technische Daten 177 *Temperatursensor* 77, 180, 1196 Topologie 186 Verkabelung 78, 403 VOC-Sensor 1196 Wassermelder 562 Wiregate 645 2-Punkt-Regelung 112

Α

ABB Stotz-Kontakt 320 Abfragespannung 537 Abisolieren 326 Abmanteln 326 Abrollhilfe 448 Abschirmung 373, 374 Abschlusswiderstand 137, 210 Access Point 228 ACK 162 Aderendhülse 328 AES 225 Agent 238 Akkumulator 504, 661 Akkuschrauber 333

Aktienkurs 935, 1244 Aktor 575 im Verteiler 429 Unterputz 599 Alarm Zentrale 1175 Alarmanlage 49, 1173 Alarmierung 1180 Alarmmelder 563, 667 Alias 1051 ALSA 974 Ambient Assisted Living 56 Analogaktor 583 Analogeingang 607 Anforderungskatalog 445 Ansagentexte 1155 Antrieb 1107 SMI 230 Anwesenheitslogik 297 Anzeigen 698 Apache 1047 aplay 975, 1155 Applikation 853 Applikationsbaustein 629 aptitude 266 APT-Paketverwaltung 264 Arbeitskontakt 109 Arbitrierung 153 Architekt 307 Arcus-EDS 321 Arduino 574 Argus 541 ARM-Cross-Compiler 1205 Armierungsdraht 379

ARP 220

ASN.1 243

Asterisk 824

894

Aufdrehset 327

Auflagebock 396

Auflegen 326

Audio 725

Attribut

asynchron 208

asound.conf 1147

Anforderungen 443

Gruppenadresse 896

Kommunikationsobjekt

Auflegewerkzeug 328 Aufputzschalter 673 Aufzeichnung 405 Auktionen 453 Ausfallüberwachung 1101 Ausgangsbox 922 Auslösecharakteristik 93 Ausschreibung 308 Ausstattung 419 Ausstattungsempfehlung 312 Außenbereich 466 Außenleiter 372 Außenlinie 467 AutoFilter 350 Automatikschalter 540 Automatikschloss 719 Automation 117 Automatisierungsbus \rightarrow Bussystem Automatisierungsrechner 67, 75,633 Automatisierungssoftware 647 Veraleich 1061 Automount 262

В

Babyfon 682 Backbone 141, 146, 150 Backup 49,808 Backup-System 476 Banana Pi 784 Bandbreite 375 ermitteln 362 Bandsperre 145 bash 255 batterielos 196, 216 Baudrate 208 Baum 187 Baumarkt 397, 452 Bausteine 495 Baustellenbetrieb 174, 723 Bauteilbibliothek 336 Bauträger 307 bcusdk 997

Beacon 215

BeagleBone Black 786 Beamer 751 Lift 752 Position 755 Bearbeitungsstatus 444 Bedienkonzepte 434 Bedingte Formatierung 352 Befehl 930 Behaglichkeitsfeld 570 Behang 1103 Beleuchtung Auslässe 406 DALI 167.1091 dimmen 48, 49, 1079 Effekte 617 Konstantlichtregelung 545 Präsenzsteuerung 1085 Praxisbeispiel 1073, 1244 Statusanzeige 700 unabhängige 404 Beleuchtungsautomatik 1085 Beleuchtungseffekte 213 Beleuchtungsplanung 1068 Beleuchtungsstärke 116 Beleuchtungstechnik 211 Bemaßung 348 Bemessungsdifferenzstrom 94 Benachrichtigung 70 Benchmark 362 Bereich 141, 146, 158 Bereichskoppler 141, 527, 532 Beschaffung 450 Besitzer 258 Betonbau, Dose 385 Betoninstallation Leerrohr 378 Betriebsartenumschaltung 1136 Betriebsdatenerfassung 665 Betriebsgerät 170 Betriebsmodus 1128 Betriebsstundenzähler 618, 921, 1077 Betriebssystem 78, 779 Bewegungsmelder 67, 402, 537, 1243 Bezeichnung 424 BidCoS 231 Binärauslöser 929

Binäreingang 436, 601, 670, 1075, 1178 Reed-Kontakt 537 Bindings 1019 Biometrischer Sensor 818 Bistabile Kippstufe \rightarrow Flipflop Bitrate 208 Blacklist 85 Blickschutz 1118 Bluetooth 217 Blu-Rav-Plaver 755 Bohrmaschine 333 Bosch 333, 334 Broadcast 144, 221 Bühnentechnik 211 Bus 187 Busankoppler 525 Buskabel 130 Busklemme 131 Busmaster \rightarrow 1-Wire. Busmaster Busmonitor 165, 624, 886 Bussystem 50, 52 Linie 528 Spannungsversorgung 503 Vorteile 55 Busverbindung herstellen 131

С

Cacti 1055 CallMon 932 Cape 787 Capture 354 Cat-Datenleitung auflegen 328 Ausführungen 374 Beispiel 376 CDT 1207 CEC 1163 Cherokee 1047 C-Last 577 Clip Project 432 Clonezilla 477 CO2-Konzentration 566 CO2-Sensor 564 Codetastatur 817 collectd 1227, 1232, 1235 CometVisu 648, 1023 Community 323

Community-String 241 Control Points 248 Coordinator 215 Cover 975 Crimpen 326 cron 262 crontab 262, 1000, 1045 Cross-Entwicklung 1204 Cross-Kabel 759 CSMA/CA 153, 215 CSMA/CD 152.219 Cubieboard 3 788 Cubieboard 4 790 Cubietruck 788, 1218 CUL 1012 CUNO 1012

D

Dachfenster 717 $Daemon \rightarrow Dienst$ Daisv-Chain 211 DALI Adressierung 614 auflegen 393 DMX-Gateway 621 DMX-Konverter 213 EVG 172.712 *Gateway* 613, 1092 Grundlagen 167 Praxisbeispiel 1091 Stand-by-Verbrauch 619 technische Daten 167 Dämmerungssensor 1118 Dämmung 56 Leerrohre 380 DAS 799 Das Grüne 373 Datenblätter 450 Datenlogging 641, 645 Datenpunkttypen 161 Datenschiene 132 Dauerstrom 430 Debian 78.79 Debugging 1211 DECT 48, 232, 313, 823 Designer 1018 Destination 220 Dezentrales System 51, 52, 403.407 Diagramm 295

DIALux 1068 Dienst 267 Differenzielle Übertragung 210 Digitaler Schlüssel 817 Digitales Schlüsselbrett 1199 Digitaltechnik 107 Dimmaktor 590, 1079 Dimmbares Licht 1079 Dimmer 67,72 Dimmkurve 169 Dissector 354 DLNA 247 dmesg 276 DMX 211 EnOcean-Gateway 626 Gateway 619 Übertragung 212 DNS-Dienst 470 Dolphin-Plattform 200 Dome-Kamera 757 $Dose \rightarrow Installationsdose$ Download-Datenbank 323 dpkg 265 $DPT \rightarrow Datenpunkttypen$ Drop-down-Liste 351 Drossel 507 Druckfestigkeitsklassen 378 DS18B20 77 DS9490R 77 Dummy-Applikation 856 Durchflussbegrenzer 834 Durchgangsdose 382 Durchgangsprüfer 332 DVB 980 DVD-Plaver 755 DWG-Datei 347, 423 Dynamisches Gitter 348

E

E/A-Konzentrator 604 Eclipse 1203 openHAB Designer 1024 Effektsteuerung 617 E-Home \rightarrow Smart Home eHZ 652 EIB 134 eibd 996 EibPC 639

eibPort 643 EibStudio 640 Eigenbau NAS 805 Touchpanel-PC 703 Eigenleistung 447 Einbruchsicherung 468 Eingangsbox 922 Einkaufsliste 450 Einlernvorgang 624 Einzelraumregelung 594,720, 835, 1123 Einzugsspirale 449 Elaborated Networks GmbH 193.452 Electronic-Dose 384, 405 Elektrik 91 Elektriker 307 konventionell 310 Typen 309 Elektroheizung 836 Elektroinstallation intelligent 55,119 konventionell 55, 119, 669 $Elektroinstallationsrohr \rightarrow$ Leerrohr Elektromotorischer Stellantrieb 721 Elektrowerkzeug 333 Elsner Elektronik 321 EMA 663 E-Mail 71 Ember Media Manager 1162 Energie-Ampel 949 Energieeffizienz 50 Energieeinsparung 488 Energie-Graph 949 Energiesparen 57, 58 Energieverbrauch 56, 485, 652 Energiewandler 197 Energy Harvesting 195 Energy Master 487 EnergyCam 654 Enertex Bayern GmbH 321 EnEV 1125 Enigma 2 744

EnOcean

Gateway 621

Grundlagen 195

Produktdatenbank 201 Reichweite 625 EnOcean (Forts.) Repeater 626 Starterkit 200 technische Daten 195 Entmanteler 326 EPG 978.1167 Equipment Profile 198 Ereignisgesteuert 931 Erfassungswinkel 543 $ERR \rightarrow Einzelraumregelung$ Erste-Hilfe-Tipps 1249 Erweiterungsmodul 584 eSATA 800 Eselsbrücke 237 Ethereal \rightarrow Wireshark Ethernet 150.218 Infrastruktur 464 ETS 843 Applikation 853 Businterface 879 Datenbank 846 Demo 877.898 Diagnose 886,900 Dongle 898 exportieren 918 Fehlersuche 900 Flaas 895 Gruppenadressen 867 Installation 844 kaufen 454 Lizenz 897 Lizenzmodell 454 Phantom 451 Plua-in 865 Preise 454 Produktdatenbank 853 Programmierung 876,885 Projekt 848 Projektprüfung 903 Szene verknüpfen 413 Europäischer Installationsbus \rightarrow EIB EventGhost 489, 705 EVG 709 EVU 493 Excel 350 Logikkatalog 446 Raumbuch 418

Exec-Skript 1237

Kommunikationsobjekte

Externe

916 Fachboden 501 FacilityServer → HomeServer Fahrzeitermittlung 588 Family Code 189 Fan-Coil-Aktor 597,827 Farbrad 1096 fastcgi 1050 Federzugklemme 386, 390 Fehlerstromschutzschalter 93.426 Feldbus 134 FELV 617 Fenster 446 Fensterantrieb 717 Fensterkontakt 120. 399. 533 Fernbedienung 71, 684, 987 Fernsteuerung 71, 706 Fernzugriff 938 Fertigfußboden 440 Fester Domainname 470 Festplatte 286, 796 FHEM 1011.1062 Filter 355 Filtertabelle 528 Fingerprint 818 Firewall 473 FI-Schutzschalter → Fehlerstromschutzschalter Flag 891, 895 Flankendetektor 953 Flashen 79 Flexibilität 50,389 Flipflop 108 Fluke 331 Fränkische 378 $Frau \rightarrow WAF$ Freetz 1051 Fremdfeldüberwachung 535 Frequenzbereiche 217, 226 FRITZ!Box 232, 769, 823 Dynamic DNS 471 Eniqma2 1171 FHEM 1012 Firmware 1052

FRITZ!Box (Forts.) Freetz 1051 Notfalladresse 1250 VPN 472 FRITZ!DECT 232 fritzcall 746 FritzControl 932 fstab 262 F-Stecker 373 Aufdrehset 327 FTP 254 Führungsgröße 110 Funknetzwerk 224 Funksensor, batterielos 196 Funksteckdosen 397 Funksystem 203 Funktionsvorlage 934, 941, 1077, 1084, 1095, 1110, 1136, 1175 FUSE 86 Fußbodenheizung 832 G

 $GA \rightarrow Gruppenadresse$ Galvanische Trennung 531 Gast 337 Gasterweiterung 343 Gateway 73, 141, 213, 461 Gatter 925 GDB-Debugger 1211 Gebäudeautomation 117 Technologien 123 Gebäudedämmung → Dämmung Gebäudestruktur 851,941 Gebäudetechnik 50 Gebäudeüberwachung 1174 Gefrierschranküberwachung 1098 Geld sparen 447 eigene Logik 664 Einzelraumregelung 1138 ETS eCampus 455 große Racks 500 KNX-Komponenten 460 Touchpanel-PC 704 UP-Binäreingang 606 Gerätedose 382 Geräteinfo 901

Geschwindigkeitsmessung 362 Gesundheit 567 Gewerke 50, 53, 117, 941 Belüftung 312 Elektrik 311 Fenster 312, 536 Heizung 311 Ialousien 312 übergreifend 398 Gewicht 187 Gira 321 Gira-Portal 938 GitHub 1213 Glasbruchsensoren 563 gmpc 970 Go 1202, 1232 GPIO-Pins 77 Grafana 1223 Grafischer Logikeditor 922 Griffüberwachung 534 groupreadresponse 999 groupwrite 999 GRUB-Bootloader 1254 Grundriss 423 Gruppe 258 Gruppenadresse 142, 866, 892 mit eibd 999 Gruppenmonitor 886,940 Gruselkabinett 62 GUPnP 250 Gute-Nacht-Taste 48

H.

Hager 495 HAK 493 Halbleiterausgang 577 Handbedienung 576, 592, 619, 1113 Handwerker 307 Haptik 675 Harmony Smart Control 685 Hauptanschlussleitung 493 Hauptgruppe 143, 159, 867 Hauptlinie 140 Hausanschluss 493 Hausanschlusskasten 493 Haus-aus-Taste 72 Hausbus → Bussystem

HbbTV 743 HDD 796 HDMI, keine Ausgabe 987 HDMI-Extender 750 HDMI-Kabel 80, 753 hdparm 286 HE 499 headless 81.801 Heimautomation 50, 51 Heimkino 751 Heißluftgebläse 334 Heizkennlinie 1123 Heizkreisverteiler 833 Heizungsaktor 67, 405, 594, 1129 Heizungssteuerung 1123 Heizungssystem 829 Helligkeit 115 Hersteller 320 History 255 HLK 545.1087 $H\ddot{o}heneinheit \rightarrow HE$ Hohlwand Dose 383 Leerrohr 380 HomeMatic 231 HomeServer 634, 635 Benutzer 914 Debua-Seite 937.957 Experte 909 IRTrans anbinden 695 Port-Knocking 1040 Programmierung 937 Projekt 912 QuadConfig 941 Schnittstelle 514.635 Software 636 Startvorgang 940 Hörende Adresse 920 Hostadapter 77, 178 Hostcheck 932 HS/FS Transfer 938 hslist 959 HSMon 962 HTPC 981, 1168 Hub 760 Hutschiene 391, 430, 494 Rechner 640, 643 Steckdose 1145 Switch 767

Hutschienenverstärker 730 Hybrides System 73 Hydraulischer Abgleich 834 Hysterese 113

iButton 181, 1197

ICMP 355, 358 IDS 474 IEEE-802.3 218 iKO → Interne Kommunikationsobjekte iLO4 777 Implementierung 441 Impulszähler 602 Induktive Lasten 577 InfluxDB 1218 Infrarotfernbedienung \rightarrow Fernbedienung Infrarotlesekopf 657 Infrastruktur 66, 398, 464 Init-Skript 273 Init-Systeme 268 inittab 271 Innenrollladen 1111 Installationsaufgaben 265 Installationsbus \rightarrow Bussystem Installationsdose 382 Installationsebene 308 Installationsleitung \rightarrow Leitung Installationsmaterial 369 Installationsverbindungsklemme 386 Installationszonen 97 Integralteil 112 Intelligente Gebäudetechnik 50 Energiesparen 57 Logikkatalog 440 Schnittstellen 464 Tastsensor 674 Technologien 123 Vorteile 56 Intelligente Haushaltsgeräte 73, 407, 837 Intelligente Stromzähler 652 Intelligentes Wohnen 45,50 Interne Kommunikationsobjekte 916

Internetradio 976 iOS. VPN einrichten 473 IP

Router 517 Schnittstelle 514,880 Iperf 362 IP-Router 150 IPS 474 IP-Schnittstelle 150 IP-Schutzart 104 IPSView 1068 IP-Symcon 1065 IP-Telefon 822 IRDB-Option 691 IR-Server 688 IRTrans 688 ISDN-Bus 911 ISO/IEC 14543-3-10 196 Istwert 110 Items openHAB 1024 SmartHome.py 1028 smartVISU 1036

Jalousie Ansteuerung 121, 588 Außenjalousien 68 Lamellenstellung 46 Praxisbeispiel 1103 SMI 230 Wetteralarm 1113 Jalousieaktor 230, 585 Jokari-Entmanteler 326 IPerf 364 JSON-RPC 989, 1171

Κ

Kabel, Begriff 369 Kabelziehstrumpf 449 Kaffeemaschine 398 Käfigmutter 499 Kaiser Elektro 382 Kameras 756, 1189 Kammschiene 429 Kanal, klonen 604 Kanäle 403 Kanalpreis 576 Kartenleser 819

Katimex 329, 448 KeePass 484 Kennlinie 591 Kernel-Calls 1252 Keyless 816, 1193 KiTTY 81,254 Klemme 386 Knipex 327, 330 knockd 488, 1037, 1152 KNX Alarmanlage 1173 auflegen 393 Außenbereich 466 Bewegungsmelder 537 Busankoppler 525 CO2-Sensor 565 dezentral 407.599 Drossel 507 Eingänge 601 ETS 843 Forum 322 Gateway 613 Grundlagen 134 Hersteller 320, 400 Infrastruktur 124 IR-Empfänger 687 Komponenten 125 LED-Anzeige 696 Leituna 103, 130, 373 Linienkoppler 527 Minimalaufbau 124 Multiroom-Verstärker 734 Parametrierung 859 Powerline 531 Programmierung 876 Proiektieruna 843 Protokoll 155 Prototyp 129 Rauchwarnmelder 559, 1176 Raum-Controller 610 Raum-Master 609 Rechenbeispiel 456 Regeln 904 Schaltaktor 575 Schnittstelle 511,879 Shop 452 Sicherheit 465 Spannungsversorgung 503 Stellantrieb 594 Stromzähler 655

KNX (Forts.) $Szene \rightarrow Szene$ $Tastsensor \rightarrow Tastsensor$ technische Daten 133 Teilnehmer 138 Topologie 136 Übertragungsmedien 135 Übertragungsverfahren 151 überwachen 663 Verbindungsklemme 389 Vorteile 52 Wetterstation 551 Wireshark Dissector 354 XML-Schnittstelle 1001 KNX IP 136 KNX PL 135 Telegrammaufbau 163 Topologie 145 Übertragung 154 KNX Präsenzmelder → Präsenzmelder KNX RF 136 Telegrammaufbau 164 Topologie 148 Übertragung 155 KNX TP 135 $knxd \rightarrow eibd$ KNXnet/IP 136, 149, 514 KNX-Planer 311 KNX-User-Forum 321, 454, 455 KnxWeb 1006 Koaxialkabel 373 Kodi 981 Add-ons 989 Datenbank 1158 PVR-Add-on 1165 KO-Gateway 920, 963 Kollisionen 152 Kollisionserkennung 219 Komfort 50, 398, 718 Kommandovervollständigung 255 Kommunikationsobjekt 892, 915 Attribut 918 Editor 916 importieren 918 Konflikt 1251 remanent 920

Konfigurationsdateien 277 Konnex Association 134 Konsole 82, 255 Konstantspannung 714 Konstantstrom 714 Kontaktabfrage 602 Kontaktiereinrichtung 181 Kontrollfeld 156 Kontrollierte Wohnraumlüftung 74,828 Luftgütesensoren 564 Konventionelle Elektrik → Elektroinstallation, konventionell Koppler 525 Kritische Ressource 408 Krone 328 Kurz-Lang-Kurz 437 Kurzschluss 92 Kurzzeitbetrieb 1104 KWL 828

L

Lamellen 1103 LAN 218 Lang-Kurz 437 Langzeitbetrieb 1104 Lastenheft 441 Lasttypen 591 Lastüberschreitung 1100 Lautsprecher 725 Layer 235, 348, 423 LED 70 EVG 173,715 LED-Anzeigen 696, 1182 Leerrohr 308, 377, 400, 423 Leinwand 753 Leitung 1-Wire 190 Begriff 369 Bezeichnungen 101, 370 einziehen 329, 448, 449 KNX 373 Koaxial 373 Leitungseinführung 497 Leitungslänge 209 Leitungsmaterial 313 Leitungsplan 423 Leitungsschutzschalter 92, 429

Leitungsverlegung 97 Lernempfänger 691 Leuchtstofflampe 709 libSML 993 Lichtgruppe 549, 1087 Lichtsteuerung 1073 Lichtstrom 116 Lichtszenen 213 lighttpd 1047, 1225 Line 187 Linie 138, 158 Linienkoppler 139, 466, 527 Liniensegment 138, 528 Linienverstärker 138, 527 Linknx 1001 Linux 78 Grundlagen 253, 257 Server Administration 275 Startvorgang 267 Linux Dash 281 Liste der offenen Probleme 306 Live-TV 978, 1165 L-Leiter 392 Logdateien 275 Logik, ereignisgesteuerte 931 Logikanforderungen 440 Logikbaustein 628,926 importieren 931 Logikblock 1188 Logikdatenbank 638 Logikeditor 921 $Logik-Engine \rightarrow Logikmaschi$ ne Logikfunktion 50, 107, 572 Logikkatalog 440 Logikmaschine 66, 67, 627 Logiktest 928 Logisch falsch 931 Logisch wahr 107, 931 logische Verknüpfung 107 Lötstation 333 $LS \rightarrow Leitungsschutzschalter$ LSA+ 328 Lüfter 827 Lüfteraktor 597 Luftgütesensor 564 Luftqualität 1199 Lumen 115 Lüsterklemme 386

Leitungssuchgerät 100, 333

Lux 115, 1118 lwknxclient 1005

MAC-Adresse 220 Mädchen-Visu 637 Magnetplaner 495 Magnetschalter 533 Mähroboter 49 Makita 334 Makrobibliothek 641 Managed Node 238 Manipulation 466 Männer-Visu 637 Mantelleitung \rightarrow Leitung Masterplan \rightarrow Smart Home, Planung MDT Technologies 321 Media Controller 249 Media Player 249 Media Printer 249 Media Renderer 249 Media Server 249 Medien 53 Medienkoppler 146, 531 Meldelinie 1175 Meldungsarchiv 47,951 Merten 321 Mesh 215, 216 Messen 331, 533, 651 Metabo 334 MIB 239 MIB Browser 244 Microsoft Excel \rightarrow Excel Microsoft Visio → Visio Miele@home 839 Mikroklemme 132 Mini-Amp 730, 1144 Mini-Server 774, 792 Mischgassensor \rightarrow VOC-Sensor Mittelgruppe 143, 159, 867 Mobil fernsehen 1169 Modellierung 295 Montage, Wetterstation 554 Montageband 380 Montagehöhe 439 Motorkugelhahn 563 Motorschloss 49, 404, 718 mount 260

Move-Step 437 Moxa 658 MP3Tag 1161 MPaD 975, 1151 MPC 972 MPD 967, 1147 mSATA 798 Mülltonne 49.933 Multicast 158, 221 Multifunktionsmodul 609 Multimedia Landschaft 251, 1157 Rack 498 Steuerung 692 Multimedia-Software 967 Multimeter 332 Multiroom Audio 49.73 Umsetzung 1141 Verstärker 731 $Multischalter \rightarrow Multiswitch$ Multiswitch 740 Musik-CD archivieren 1155 Mux 980 MyFRITZ! 470 MySQL-Server 1159, 1170

Ν

Nachtbeleuchtung 1243 Nagelschelle 380 NAK 162 nano 256 N-Anschluss 430 NAS 49.801 rsync 481 NAT 474 Natural-Cooling 1139 NBF 305 Nennstrom 93, 577 NetHogs 368 Netzfreischaltung 1098 Netzteil KNX 503 universal 507 Netzwerk Diagnose 358 Firewall 473 Installationskabel 376 Komponenten 759 Link 376

Netzwerk (Forts.) Sicherheit 227.468 Speicher 808 überwachen 1055 Verzeichnisse 260 Zugang absichern 469 Netzwerkkamera 756 Neutralleiter 372.391 NFC 820 NFS 260 Netzwerkverzeichnis einbinden 261 NH-Sicherung 493 Nmap 365 No-IP.com 470 Normally Closed 109 Normally Open 109 Notizfunktion 957 NUC 704, 774, 1147 Nutzungsdauer 55 Nutzungsverhalten 56,57 NYM auflegen 391 Bezeichnung 370 entmanteln 326 NYM-Leitung 313, 402

0

Odroid U3 791 Odroid XU3 792 Öffner 109 OID 240 OKFF 99, 440 OKRF 440 OpenELEC 984, 1159 openHAB 1018, 1062 OpenLighting 620 Optimierung, OpenELEC 985 Optokopf 657,994 Optolink 1060 OSI-Modell 357 OSI-Referenzmodell 219, 235 Overclocking 283 OWFS 83, 178, 1006 automatisch starten 87

Ρ Paketfilter 474 Paketmanagementsystem 264 Panikfunktion 718 Paniktaste 72 Parasitärer Betrieb 183 Parität 162 Parts per Million 566 Party-Taste 1128 Passwortdatenbank 484 Paste-Funktion 84 Patch-Kabel 376 Performance 362 Perl 1203 Pflichtenheft 441 Phantom-Installation 451 Phasenabschnittsteuerung 590 Phasenanschnittsteuerung 590 Phasenkoppler 145 Phoenix-Contact 391,432 PHP 1203 IP-Symcon 1066 lighttpd 1050 Physikalische Adresse 882, 902 physikalische Adresse 141 Pigator 521 Ping 357, 358 PI-Regelung 112 PIR-Prinzip 537 Planer 311 Planung Bedienkonzepte 434 Beleuchtung 1068 Geld sparen 447 Infrastruktur 461 Leitungsplan 423 Logikanforderungen 440 Platzierung 546 Preisbeispiel 457 Rauchwarnmelder 560 Raumbuch 417 Schaltplan 335 Schritte 417 Stromlaufplan 433 Tastsensoren 675 Touchscreen 702

Planung (Forts.) Verteilerplanung 425, 497 Visualisierungskonzept 698 Playlist 1154 Plug-and-play 247 Plug-in Browser 945 Diaaramm 946 Quad-Visu 943 Vergleich 1062 PoE-Injektor 771 Pool 836 Port-Forwarding 476 Port-Knocking 1037 Port-Mirroring 765 Ports 279 Portscanner 365 Potenzialfreie Kontaktabfrage 603 Power over Ethernet 770 powercfg 489 Powerline 135 Präsenzmelder 63, 67, 70, 402, 544 Beleuchtung 1086 Prefix-Dose 386 Preset 1120 Probleme, PIR-Melder 549 Produktdatenbank 852 Professional Busmaster 192 Profilschiene 499 Programmierbare Fernbedienung 684 Programmiermagnet 541 Programmiersprachen 1201 Programmiertaste 883 Projektierung 843 ProLiant 776 Proportionalanteil 112 Proprietäre Systeme 124 Protokoll 52, 235, 241 Analyzer 353 EnOcean 198 ICMP 355 WLAN 225 Prototyp 405 Proxy 475 Prozessabbild 916 pthsem 997 PTI 392

Pulsweitenmodulation 112 PuTTY \rightarrow KiTTY PUTVAL 1239 PVR 1164 PWM \rightarrow Pulsweitenmodulation Python 1202 *SmartHome.py* 1030

Q

qHSMon 962 QuadClient 954 *Konfiguration* 950 QuadClient Config Editor 954 QuadConfig 941 QUAD-LNB 741 Quad-Visu 637 *Plug-in* 943 Quattro-LNB 741 Quelladresse 157 Querschnitt 313, 431 Quittierungstelegramm 163

R

Radio 976 RAID 805 RAM-Disk 284 ramlog 285 Raspberry Pi 75, 77, 782 Alugehäuse 1164 Basiseinstellungen 80 Cross-Entwicklung 1204 DMX-Gateway 620 eibd 997 Einführungsbeispiel 77 EnOcean-Gateway 622 feste IP-Adresse 285 Hot Backup 478 IR-Empfänger 687, 1163 knockd 1037 KNX-Schnittstelle 520 libSML 994 Linknx 1002 Modell B 783 Modell B+ 784 MPEG2-Lizenz 987 OpenELEC 984 Optimierung 282 Overclocking 283

Raspberry Pi (Forts.) RAM-Disk 284 Smart Metering 1215 SmartHome.pi 1028 Temperatur 988 vcontrold 1060 Vorstellung 782 Raspberry Pi 2 785 Raspbian 78,79 raspi-config 81,283 Rauchwarnmelder 73, 402, 556, 1176 Raumausstattung 312, 419 Raumbuch 417 Raumcontroller 674 Raumliste 418 Raumtemperaturregelung 46, 51, 111, 204, 405, 565, 594, 1126, 1132 RCBO 96 $RCD \rightarrow Fehlerstromschutz$ schalter RDM 213 Rechtekonflikt 1250 Reed-Kontakt 67, 533 REG 494 Regelabweichung 111 Regelalgorithmus 111 Regelgröße 110 Regelkreis 110 Regeln goldene 399 silberne 403 Regelung 111 Regelungstechnik 107 Reichweite 148 EnOcean 195 Reihenklemme 389, 400, 430, 1196 Relais 577 Relais-Modul 1197 Remanentspeicher 641,919 Remote-Shell 254 Remote-System 1204

Repeater 145, 205, 212, 228,

532, 624, 626

RGB-LED 1091, 1247

RFID 819

Rittal 500

RJ-45 219, 376

RJ-12 77

Rödeln 379 Rohfußboden 440 Rollladenaktor 589 Rollladensteuerung 1111 root 258 ROT-Erweiterung 520, 1001 Round Robin Database 1041 Router 215, 228, 768 VPN einrichten 471 Routing 149, 518 Routing-Zähler 159 RRA 1041 RRDtool 1041, 1199, 1241 RS-232 208 Moxa-Server 658 Schnittstelle 511 RS-485 204, 210, 232 RS-Flipflop 108, 929, 1101 rsync 479 Rückführung 110 Rückkopplung 111 Rückwärtssuche 1172 Ruhekontakt 109 Runlevel 87,270 Russound 732 RWE SmartHome 232

S

SO-Schnittstelle 655 Sabotagekreis 535 Sammelbestellung 455 Sammelschiene 391, 430 SAN 795 SATA 798 SAT-Receiver 744 SAT-Verteilung 740 Scan-Fehler 941,959 Schalt-/Dimmaktor 711 Schaltaktor 67, 575, 1076, 1097 Strommessung 580 Wirkleistungsmessung 581 Schaltbare Steckdose 1097 Schalter Außenbereich 673 Bedienkonzepte 434 busfähig 601 Montagehöhe 439 Planung 435 reduzieren 402

Schalter (Forts.) Schalterbatterien 62 Schalterprogramme 670 Schaltplan \rightarrow Stromlaufplan Schaltschrank 493 Scharfschaltung 1173 Schlafmodus 1085 Schlagdübel 380 Schließer 109 Schnittstelle 463, 511, 941 Schraubendreher 329 Schutzbereich 99 Schwachstromleitung 372 Schwellwert 1116 Schwimmbad 836 Scotty 683 SCP 254 Scrapen 1161 SDHC-Speicherkarte 79 sichern 478 *Zugriff reduzieren* 284 Seitenschneider 330 Selektiver Leitungsschutzschalter 95 Selektivität 91 SELV 172, 177 Send-by-Change 925 Senderlogo 981 Sensorband 561 Sensoren 533 einzeln aktivieren 548 Feuchtigkeit 48 Luftgüte 406 Wetter 552 Serielle Schnittstelle 208 Server 773 Server-Administration 275 Server-Optimierung 282 Set-Top-Box 744 SetWertQueue 961 SFP-Modul 762 SFTP 254, 1206 Shapes 347 Shell-Kommandos 288 Shutdown 270 Sicherheit 50, 56, 227, 465, 663 Fensterkontakte 534 Haustüröffner 407 Linienkoppler 531

Sicherheit (Forts.) Port-Knocking 1037 Wetterstation 588 WLAN 227 Sicherheitsbaustein 666 Sicherungsfeld 162 Sicherungspunkt \rightarrow Snapshot Signaldeckel 385 Signalreflexion 212 SIP 811 Slave 179 $SLS \rightarrow$ selektiver Leitungsschutzschalter Smart Home 1-Wire 182 Audio 725, 1152 Ausbaustufen 65 Ausstattungsempfehlung 312 Automation 119 hedienen 669 Bedienoberfläche 47,70 DALI 174 Definition 50 DMX 213 EnOcean 202 Entscheidung 55 $fernsteuern \rightarrow Fernsteue$ runa Grundfunktionen 68 Gruselkabinett 62 Komponenten einkaufen 450 künftige Erweiterungen 74 nachrüsten 67.460 Planuna 305 Preis 399 Prinzipien 397 Pyramide 65 Regeln 399 RS-232 210 RS-485 211 Sensorik 69 SMI 229 Stromverbrauch 485 Subsysteme 462 Technologien 123, 207 Telefon 823, 1171 ungewöhnliche Projekte 1243 Video 739, 1170

Smart Home (Forts.) vorbereiten 66 ZigBee 214 Z-Wave 216 Smart Living \rightarrow Smart Home Smart Metering 51, 73, 75 Cacti 1059 Client 1217.1235 Praxisumsetzuna 1215 Server 1218 SmartHome.pi 521, 1028 SmartHome.py 1025, 1062 smartVISU 1033 Smartphone 48, 51, 71, 398 Fernsteueruna 706 VPN 470 Wandmontage 701 Smart-TV 742 smartVISU 1031 SMB 260 Netzwerkverzeichnis einbinden 260 SMI 229 SML 993 SMON-Protokoll 765 SMS 71 Snapshot 346 Sniffer 353 SNMP 237.1055 Packet-Generator 246 Windows 7 247 SOAP 248 Softwaredesign 441 Softwareentwicklung 441 Solltemperatur 1127 Sollwert 110 Sollwertverschiebung 1127 Sonnenschutz 229 Sonos 737 Soundkarte 735 Source 220 Spannungsprüfer 331 Spannungsversorgung 507 1-Wire 183 DALI 170 unterbrechungsfrei 504, 658 Speicher 795 Sperre 1247 Sperrfunktion 579, 1112 Sperrobjekt 1086

Spickzettel 1193 Spin-down 286 sPlan 335 Splitter 212 Spracherkennung 681 Squeezebox 737 SSD 796 SSH 81.253 $Client \rightarrow KiTTY$ Key erzeugen 254 Server 81 SSHD 797 Stabila 331 Stakeholder 307 Stammdaten 912 Standard, $KNX \rightarrow KNX$ Standards, bewährte 399 Starkstromleitung 370 Start-/Stoppskript 268 Statiker 307.308 Statusanzeige 70, 696 Statusobjekt 579, 1078 Statusrückmeldung \rightarrow Statusobjekt Statuswert 1077 Staubsauger 449 Steckbrücke 395, 431 Steckdose 67 ausrichten 331 montieren 672 schalten 1097 Steckmuffe 381 Steigschacht 402 Stellantrieb 112, 596, 720, 834.1130 Step-Move-Step 437 Stern 187, 217, 223 Steuergröße 111 Steuerung 111 Stichsäge 333 Stockklemme 390 Störgröße 110 Störmeldebaustein 665 Störungskontakt 558, 826, 1176 strace 1251 Streaming 249, 968, 978, 1168 Streaming-Client 1164 Strom sparen 286, 464 Stromausfall 659 Stromerkennung 1098

Stromkreisverteiler 91, 425, 493 Stromlaufplan 335, 433 Strommessung 404, 580 Praxisbeispiel 1098 Waschmaschine 563 Stromschlag 311 Stromverbrauch 47, 57, 485 1-Wire 185 Stromzähler 652,994 Strukturierte Gebäudeverkabelung 66, 389 Stückliste 336 Subsysteme 461 Switch Ethernet 46,761 Managed 763 PoE-fähia 770 SAT-Multiswitch 46,740 SNMP 244 unmanaged 220 switched Ethernet 220 Symmetrische Signalübertragung 152, 210 Synchroner Farbwechsel 213 SynOhr 681 Synology 481 syslog 276 System dezentrales 407 zentrales 407 systemd 268 Systemintegrator 309 Systemkoppler 146, 532 SvsV-Init 268 Szene 48, 49, 71, 403, 410 Arten 412 ausschalten 415 definieren 415 Definition 410 DVD sehen 692 Kino 754 Teilnehmer 411 Т Tabulatortaste 255

Taggen 1161

Target 1204

Tastsensor 63, 439, 674, 1080, 1105 Anschluss 679 Taupunkt 568 Tcpdump 359, 1241 TDMA 154.217 TE 425.494 TeamViewer 704 Technikraum 308, 493 Teilnehmer 158, 169 Teilungseinheit → TE Telefon 73, 822 Telegramm 155, 199 Telegrammbegrenzung 931 Telegrammgenerator 936 Telegrammwiederholung 148 Telnet 254, 519 Linknx 1004 Temperatur messen 77 Sensor 77, 198, 1196 Temperaturregelung 111 Temperaturschwankung 115 Temperaturspreizung 832 Terminal 255 Tastenkürzel 256 Testtaste 95 Thermoelektrischer Stellantrieb 721 Thunderbolt 800 Time To Live 159 Timeshift 981 TKS 813 Communicator 1190 Farbkamera 1190 *IP-Gateway* 1191 Topologie 136, 215, 223, 463, 850 Touchpanel 701 Touchscreen 47,701 Transcend 79 Transponder 819, 1191 Trap-Telegramm 241

Tastenhilfe 439

smart 122

Bedienung 438

Tasterinterface 606

konventionell 122

Tasterschnittstelle, LED 699

Taster 436

Trennklemme 390 Trennrelais 586 Treppenhauslicht 924 Treppenlichtfunktion 579 Troubleshooting 1249 $TrueCrypt \rightarrow VeraCrypt$ TSOP 1163 TUL-Stick 1012 Tunneling 149, 518 Türkommunikationssystem 73.812 Türkontakt 533 Türsprechanlage 704 Türstationen 813 Tyheadend 978, 1168 TV-Karte 739 TV-Server 978 Twisted Pair 136, 220 Twisted-Pair-Kabel 374

U

UART 208 Überbrückungszeit 659 Überlast 92 Überstromschutzeinrichtung 92 Übertragungsfunktion 111 Übertragungsgeschwindigkeit 136, 170, 177, 195, 226, 616 Übertragungsmedium 52, 135 Überwachung 533, 663 Ubuntu *lighttpd* 1048 virtuelle Maschine 342 Umkehrpause 588 UML 295, 1184 Tools 300 Umwälzpumpe 832 Unicast 158 Universalfernbedienung 684 Universalschnittstelle 605 Universum 212 unmanaged Switch 220 Unscharfschaltung 1174 Unsichtbarer Lautsprecher 728 Untergruppe 143, 159, 867 Unterputz Aktor 599

Unterputz (Forts.) Binäreinaana 605 Unterputz-Busankoppler 527 Unterputzeinsatz 384 Unterverteilung 407, 498 Unverschlüsselte Verbindungen 475 UPnP 247 Ouad-Visu 944 UPnPAV 249 UPS-Daemon 662 Upstart 268 USB Festplatte 800 Hub 77 Schnittstelle 513 USV 658 USV-Rechner 661

V

vboxmanage 345 vclient 1061 v-control 1060 VdS-Prüfzeichen 557 Ventilantriebsaktor 594 Ventilspülung 1130 VeraCrypt 483 Verbindung Funk 196, 214, 216, 224, 409 Powerline 410 verkabelt 409 Verbindungsdose 382 Verbrauchsmessung 583 Verdrahtung 429 Verdrosselt 504 Verifikation 441 Verkabelung 66 1-Wire 189 Außenbereiche 319 Erweiterungsmöglichkeiten 319 im Verteiler 428 raumintern 319 Reihenklemme 389 sternförmig 312,400 $Verlegezone \rightarrow Installations$ zone Verlustleistung 593

Vernetzung 50, 73, 461 Rauchwarnmelder 557, 1176 Verschlüsselung 227, 483 Verstärker 728 Verteilerplanung 425, 497 Verteilerschrank 401 Verteilung 312, 425 Video 73,739 Videoclient 1164 Videomatrix 750 Videoserver 1168 Videoüberwachung 756 Viessmann, Steuerung 1060 Virenscanner 1251 Virtual Machine 337 ETS 844.897 FHEM 1013 Freetz 1052 HomeServer Experte 911 VirtualBox 337 Extension Pack 338 Festplatte 339 Gasterweiterung 344 headless 345 Kommandozeile 345 Virtualisierung 337 Virtuelle Verkabelung 143, 440.866 Visio 301, 337, 347 Leitungsplan 423 Visualisierung 47, 66, 70, 405, 669 EibPC 642 HomeServer 637 Mobilzuaana 473 Touchscreen 701 Vitogate 1125 VLAN 224 V-Modell 441 VOC-Sensor 74, 564, 1197 Voice over IP \rightarrow VoIP VoIP 811,822 Vollduplexmodus 219 Voltus GmbH 452 Vorlauftemperatur 1123 Vorschaltgerät 169,709 Vorzugsmaß 98 VPN 469, 645, 707 VTi Image 746 Vu+ 745

W

WAF 59, 1121 Wago 387, 391 Wahrheit, logische 107 Wahrheitstabelle 107 Wärmepumpe 830 Wärmerzeuger 830 Warntöne 1155 Wasserdurchflusssensor 827 Wasserenthärter 47,825 Wassermelder 73, 561 Wasserwaage 331 Watchdog 929, 1101 W-DMX 213 Web Smart Switch 764 Webabfrage 749 Webif 746 Webseitenabfrage 244,934, 1245 Wechselkontakt 585 Weinzierl Engineering GmbH 321 Well-Known-Port 279 Wera 330 Werkzeug 325 Wertanzeige 965 Wettersensor 552 Wetterstation 49, 64, 551, 944, 1113 Wettervorhersage 934, 945 Wetterzentrale 552 Wheezy \rightarrow Debian

Wiederverkaufswert 399 Wi-Fi 224 Wi-Fi Analyzer 229 Win32DiskImager 79, 478, 984 Windalarm 64, 445, 1116 Windows, Energiesparplan 489 WinPcap 353 Wippe 436 Wiregate 192, 644, 1197 KNX-Schnittstelle 523 Wireless LAN 224 Wireshark 353, 1249 Tcpdump öffnen 361 Wirkleistungsmessung 581 Wirkungsgrad 509 WLAN 224 Access Point 46 Hardware 227 Verbindungsgualität 228 Wohnkomfort 62 Wohnungsstation 813 WOL 488, 1152, 1153, 1171 Women Acceptance Factor \rightarrow WAF WPA2 227

Х

XBMC → Kodi XLR-Stecker 212

Ζ

Zackband 396 Zählerschrank 493 Zählfunktionen 351 ZB53S 497 ZB55S 495 Zenmap 367 Zentraladresse 920, 1077, 1079, 1136 Zentrale Medienbibliothek 1158 Zentrales System 407 Zentralfunktion 71,416 Zentval 781 Zieladresse 158 ZigBee 214 Entwicklungskit 216 Zonen 1143 Zugkasten 382 Zugriffsrechte 257 Zustandsdiagramm 296 Zustandsmaschine 444, 1184 Zustandsübergang 297 Zutrittskontrolle 816, 1191 Z-Wave 216 Zweimal drücken 1078 Zykluszeit 113

Stefan Heinle ist Diplom-Ingenieur der Elektrotechnik und begeisterter »Heimautomatisierer«. Er arbeitet als Leiter im Bereich Software-Plattformen für sicherheitskritische embedded-Systeme in der Luftfahrt. Sein Leitspruch für dieses Handbuch ist so einfach wie anspruchsvoll: »Genau das Buch schreiben, das ich mir damals, als ich selbst in das Thema eingestiegen bin und für mich die phantastischen Möglichkeiten eines Smart Homes entdeckt habe, gewünscht hätte«. Kurz: Mission erfüllt!

Stefan Heinle

Heimautomation mit KNX, DALI, 1-Wire und Co. – Das umfassende Handbuch

1.267 Seiten, gebunden, November 2015 49,90 Euro, ISBN 978-3-8362-3461-0

Wir hoffen sehr, dass Ihnen diese Leseprobe gefallen hat. Sie dürfen sie gerne empfehlen und weitergeben, allerdings nur vollständig mit allen Seiten. Bitte beachten Sie, dass der Funktionsumfang dieser Leseprobe sowie ihre Darstellung von der E-Book-Fassung des vorgestellten Buches abweichen können. Diese Leseprobe ist in all ihren Teilen urheberrechtlich geschützt. Alle Nutzungs- und Verwertungsrechte liegen beim Autor und beim Verlag.

Teilen Sie Ihre Leseerfahrung mit uns!

